Crustacean Proteases and Their Application in Debridement

Main Article Content

Erick Perera
Leandro Rodriguez-Viera
Vivian Montero-Alejo
Rolando Perdomo-Morales

Abstract


Digestive proteases from marine organisms have been poorly applied to biomedicine. Exceptions are trypsin and other digestive proteases from a few cold-adapted or temperate fish and crustacean species. These enzymes are more efficient than enzymes from microorganism and higher vertebrates that have been used traditionally. However, the biomedical potential of digestive proteases from warm environment species has received less research attention. This review aims to provide an overview of this unrealised biomedical potential, using the debridement application as a paradigm. Debridement is intended to remove nonviable, necrotic and contaminated tissue, as well as fibrin clots, and is a key step in wound treatment. We discuss the physiological role of enzymes in wound healing, the use of exogenous enzymes in debridement, and the limitations of cold-adapted enzymes such as their poor thermal stability. We show that digestive proteases from tropical crustaceans may have advantages over their cold-adapted counterparts for this and similar uses. Differences in thermal stability, auto-proteolytic stability, and susceptibility to proteinase inhibitors are discussed. Furthermore, it is proposed that the feeding behaviour of the source organism may direct the evaluation of enzymes for particular applications, as digestive proteases have evolved to fill a wide variety of feeding habitats, natural substrates, and environmental conditions. We encourage more research on the biomedical application of digestive enzymes from tropical marine crustaceans.


Article Details

How to Cite
Crustacean Proteases and Their Application in Debridement. (2020). Tropical Life Sciences Research, 31(2), 187–209. https://doi.org/10.21315/tlsr2020.31.2.10
Section
Original Article

References

Adekoya O A, Helland R, Willassen N P and Sylte I. (2006). Comparative sequence and structure analysis reveal features of cold adaptation of an enzyme in the thermolysin family. Proteins 62(2): 435–449. https://doi.org/10.1002/prot.20773

Aehle W. (2004). Enzymes in industry. Weinheim: Wiley-VCH Verlag GmbH & Co. KGaA. Ahsan M M and Watabe S. (2001). Kinetic and structural properties of two isoforms of trypsin isolated from the viscera of Japanese anchovy, Engraulis japonicus. Journal of Protein Chemistry 20: 49–58. https://doi.org/10.1023/A:1011005104727

Andreu V, Mendoza G, Arruebo M and Irusta S. (2015). Smart dressings based on nanostructured fibers containing natural origin antimicrobial, anti-inflammatory, and regenerative compounds. Materials(Basel) 8(8): 5154–5193. https://doi.org/10.3390/ma8085154.

Anheller J E, Hellgren L, Karlstam B and Vincent J. (1989). Biochemical and biological profile of a new enzyme preparation from Antarctic krill (E. superba) suitable for debridement of ulcerative lesions. Archives of Dermatological Research 281: 105–110. https://doi.org/10.1007/BF00426587

Antranikian G, Vorgias C E and Bertoldo C. (2005). Extreme environments as a resource for microorganisms and novel biocatalysts. Advanced in Biochemical Engineering/Biotechnology 96: 219–262. https://doi.org/10.1007/b135786

Bahr S, Mustafi N, Hättig P, Piatkowski A, Mosti G, Reimann K, Abel M, Dini V et al. (2010). Clinical efficacy of a new monofilament fibre-containing wound debridement product. Journal of Wound Care 20(5): 242–248. https://doi.org/10.12968/jowc.2011.20.5.242

Bañuelos-Vargas I, Cárdenas-Chávez F, Paschke K, Román-Reyes JC, Salazar-Leyva JA and Martínez-Montaño E. (2018). Partial biochemical characterization of digestive proteases present in the gastric juices of two Chilean crustaceans, Lithodes santolla (Molina, 1782) and Cancer edwardsii (Bell, 1835). Latin American Journal of Aquatic Research 46(2): 289–300. https://doi.org/10.3856/vol46-issue2-fulltext-5

Barret A, Rawlings N and Woessner J. (1998). Handbook of proteolytic enzymes (2nd ed.). San Diego: Academic Press. Benjamin D C, Kristjansdottir S and Gudmundsdottir A. (2001). Increasing the thermal stability of euphauserase. A cold-active and multifunctional serine protease from Antarctic krill. European Journal of Biochemistry 268(1): 127–131. https://doi.org/10.1046/j.1432-1327.2001.01857.x

Bibo-Verdugo B, Rojo-Arreola L, Navarrete-del-Toro M A and García-Carreño F. (2015). A chymotrypsin from the digestive tract of California spiny lobster, Panulirus interruptus: Purification and biochemical characterization. Marine Biotechnology (NY) 17: 416–427. https://doi.org/10.1007/s10126-015-9626-z.

Buarque D S, Castro P F, Santos F M S, Lemos D, Carvalho L B and Bezerra R S. (2009). Digestive peptidases and proteinases in the midgut gland of the pink shrimp Farfantepenaeus paulensis (Crustacea, Decapoda, Penaeidae). Aquaculture Research 40(7): 861–867. https://doi.org/10.1111/j.1365-2109.2009.02183.x

Burgos-Hernández A, Farias S I, Torres-Arreola W and Ezquerra-Brauer J M. (2005). In vitro studies of the effects of aflatoxin B1 and fumonisin B1 on trypsinlike and collagenase-like activity from the hepatopancreas of white shrimp (Litopenaeus vannamei). Aquaculture 250: 399–410. https://doi.org/10.1016/j.aquaculture.2005.05.024

Campell D, Hellgren L, Karlstam B and Vincent J. (1987). Debriding ability of a novel multienzyme preparation isolated from Antarctic krill (Euphausia superba). Experientia 43: 578–579. https://doi.org/10.1007/BF02143592

Carson S N, Wiggins C, Overall K and Hebert J. (2003). Using a castor oil-balsam of peru-trypsin ointment to assist in healing skin graft donor sites. Ostomy Wound Manage 49: 60–64.

Cathomas M, Schüller A, Candinas D and Inglin R. (2015). Severe postoperative wound healing disturbance in a patient with alpha-1-antitrypsin deficiency: The impact of augmentation therapy. International Wound Journal 12(5): 601–604. https://doi.org/10.1111/iwj.12419

Celis-Guerrero L E, García-Carreño F L and del Toro M A. (2004). Characterization of proteases in the digestive system of spiny lobster (Panulirus interruptus). Marine Biotechnology (NY) 6: 262–269. https://doi.org/10.1007/s10126-003-0032-6

Chambers L, Woodrow S, Brown A P, Harris P D, Phillips D, Hall M, Church J C and Pritchard D I. (2003). Degradation of extracellular matrix components by defined proteinases from the greenbottle larva Lucilia sericata used for the clinical debridement of non-healing wounds. British Journal of Dermatology 148(1): 14–23. https://doi.org/10.1046/j.1365-2133.2003.04935.x

Chen Y L, Lu P J and Tsai I H. (1991). Collagenolytic activity of crustacean midgut serine proteases: comparison with the bacterial and mammalian enzymes. Comparative Biochemistry and Physiology 100(4): 763–768. https://doi.org/10.1016/0305-0491(91)90287-N

Clark R A F. (1997). Wound repair: Lessons for tissue engineering. In: Lanza R P, Langer R and Chick W (Eds.). Principles of tissue engineering. San Diego: Academic Press, 737–768.

Córdova-Murueta J., García-Carreño F L and Navarrete del Toro M A. (2003). Digestive enzymes present in crustaceans feces as tool for biochemical, physiological, and ecological studies. Journal of Experimental Marine Biology and Ecology 297(1): 43–56. https://doi.org/10.1016/S0022-0981(03)00355-1

da Silva-Santos F M, Ribeiro K, Vasconcelos de Freitas A C, Bezerra de Carvalho L, Valenti W C and de Souza Bezerra R. (2014). Digestive proteases from wild and farmed male morphotypes of the Amazon River Prawn (Macrobrachium amazonicum). Journal of Crustacean Biology 34(2): 189–198. https://doi.org/10.1163/1937240X-00002215

de la Cruz K J, Álvarez-González C A, Peña E, Morales-Contreras J A and Ávila-Fernández Á. (2018). Fish trypsins: potential applications in biomedicine and prospects for production. 3 Biotech 8:186. https://doi.org/10.1007/s13205-018-1208-0

Dendinger J E and O’Connor K L. (1990). Purification and characterization of a trypsinlike enzyme from the midgut gland of the Atlantic blue crab, Callinectes sapidus. Comparative Biochemistry and Physiology 95B: 525–530. https://doi.org/10.1016/0305-0491(90)90014-K

D’Hemecourt P A, Smiell J and Karim M R. (1998). Sodium carboxymethylcellulose aqueous-based gel vs. becaplermin gel in patients with nonhealing lower extremity diabetic ulcers. Wounds 10: 69–75.

Díaz-Mendoza M, Ortego F, García de Lacoba M, Magaña C, de la Poza M, Farinós G P, Castañera P and Hernández-Crespo P. (2005). Diversity of trypsins in the Mediterranean corn borer Sesamia nonagrioides (Lepidoptera: Noctuidae), revealed by nucleic acid sequences and enzyme purification. Insect Biochemistry and Molecular Biology 35(9):1005–1020. https://doi.org/10.1016/j.ibmb.2005.04.003

Díaz-Tenorio L M, García-Carreño F L and Navarrete del Toro M A. (2006). Characterization and comparison of digestive proteinases of the Cortez swimming crab, Callinectes bellicosus, and the arched swimming crab, Callinectes arcuatus. Invertebrate Biology 125(2): 125–135. https://doi.org/10.1111/j.1744-7410.2006.00047.x

Dionysius D A, Hoek K S, Milne J M and Slaitery S L. (1993). Trypsin-like enzyme from sand crab (Portunus pelagicus): Purification and characterization. Food Science 58(4): 780–784. https://doi.org/10.1111/j.1365-2621.1993.tb09357.x

Dittrich B. (1992). Comparative studies on the thermal properties of a trypsin-like protease in two hermit crabs. Helgolander Meeresunters 46: 45–52. https://doi.org/10.1007/BF02366211

Dumville J C, Lipsky B A, Hoey C, Cruciani M, Fiscon M and Xia J. (2017). Topical antimicrobial agents for treating foot ulcers in people with diabetes. Cochrane Database of Systematic Reviews 6: CD011038. https://doi.org/10.1002/14651858.CD011038.pub2

Dumville J C, O’Meara S, Deshpande S and Speak K. (2013). Hydrogel dressings for healing diabetic foot ulcers. Cochrane Database of Systematic Reviews 12: CD009101. https://doi.org/10.1002/14651858.CD009101.pub3

Durham D R, Fortney D Z and Nanney L B. (1993). Preliminary evaluation of vibriolysin, a novel proteolytic enzyme composition suitable for the debridement of burn wound eschar. Journal of Burn Care & Rehabilitation 14(5): 544–551. https://doi.org/10.1097/00004630-199309000-00009

Edmonds M and Foster A. (2000). Stage 3. The ulcerated foot. Managing the Diabetic Foot. London: Blakewell Science, 45–76.

Edwards J. (2010). Hydrogels and their potential uses in burn wound management. British Journal of Nursing 19(11): S12, S14–S16. https://doi.org/10.12968/bjon.2010.19.Sup4.48419

Edwards J and Stapley S. (2010). Debridement of diabetic foot ulcers. Cochrane Database of Systematic Reviews 20: CD003556. https://doi.org/10.1002/14651858.CD003556.pub2

Eneroth M and van Houtum W H. (2008). The value of debridement and Vacuum-Assisted Closure (V.A.C.) therapy in diabetic foot ulcers. Diabetes Metabolism Research and Reviews 24(Suppl 1): S76–S80. https://doi.org/10.1002/dmrr.852

Fernandes P. (2014). Marine enzymes and food industry: insight on existing and potential interactions. Frontiers in Marine Science 1: 46. https://doi.org/10.3389/fmars.2014.00046

Floeter S R, Vázquez D P and Grutter A S. (2007). The macroecology of marine cleaning mutualisms. Journal of Animal Ecology 76(1): 105–111. https://doi.org/10.1111/j.1365-2656.2006.01178.x

Fodor K, Harmat V, Hetényi C, Kardos J, Antal J, Perczel A, Patthy A, et al. (2005). Extended intermolecular interactions in a serine protease-canonical inhibitor complex account for strong and highly specific inhibition. Journal of Molecular Biology 350(1): 156–169. https://doi.org/10.1016/j.jmb.2005.04.039

Fornbacke M and Clarsund M. (2013). Cold-adapted proteases as an emerging class of therapeutics. Infectious Diseases and Therapy 2: 15–26. https://doi.org/10.1007/s40121-013-0002-x

França R C P, Amaral I P G, Santana W M, Souza-Santos L P, Carvalho L B and Bezerra R S. (2010). Proteases from the harpacticoid copepod Tisbe biminiensis: comparative study with enzymes from farmed aquatic animals. Journal of Crustacean Biology 30: 122–128. https://doi.org/10.1651/08-3127.1

Glyantsev S P, Adamyan A A and Sakharov Y. (1997). Crab collagenase in wound debridement. Journal of Wound Care 6(1): 13–16. https://doi.org/10.12968/jowc.1997.6.1.13

Gorfe A A, Brandsdal B O, Leiros H K, Helland R and Smalås A O. (2000). Electrostatics of mesophilic and psychrophilic trypsin isoenzymes: qualitative evaluation of electrostatic differences at the substrate binding site. Proteins 40(2): 207–217.

Gottrup F. (2010). Wound debridement. In: Cherry G W and Hughes M A (Eds.). The second Oxford European wound healing course handbook. Oxford, England: Positif Press, 83–87.

Gottrup F and Jørgensen B. (2011). Maggot debridement: an alternative method for debridement. ePlasty 11: e33.

Grady M W, Bloor S and Doyle P J. (2003). Wound healing compositions containing alpha1-antitrypsin. United States Patent US6638909B1.

Gudmundsdóttir A, Hilmarsson H and Stefansson B. (2013). Potential use of Atlantic cod trypsin in biomedicine. BioMed Research International 2013: 749078. https://doi.org/10.1155/2013/749078

Gudmundsdóttir A and Pálsdóttir H M. (2005). Atlantic cod trypsins: from basic research to practical applications. Marine Biotechnology (NY) 7: 77–88. https://doi.org/10.1007/s10126-004-0061-9

Guizani N, Marshall M R and Wei C I. (1992). Purification and characterization of a trypsin-lke enzyme from the hepatopancreas of crayfish (Procambarus clarkii). Comparative Biochemistry and Physiology 103(4): 809–815. https://doi.org/10.1016/0305-0491(92)90197-Y

Gupta A. (2008). A review of the use of maggots in wound therapy. Annals of Plastic Surgery 60(2): 224–227. https://doi.org/10.1097/SAP.0b013e318053eb5e

Hehemann J H, Redecke L, Murugaiyan J, von Bergen M, Betzel C and Saborowski R. (2008). Autoproteolytic stability of a trypsin from the marine crab Cancer pagurus. Biochemical and Biophysical Research Communication 370(4): 566–571. https://doi.org/10.1016/j.bbrc.2008.03.128

Hellgren L, Karlstam B, Mohr V and Vincent J. (1991). Krill enzymes. A new concept for efficient debridement of necrotic ulcers. International Journal of Dermatology 30(2): 102–103. https://doi.org/10.1111/j.1365-4362.1991.tb04219.x

Hellgren L, Mohr V and Vincent J. (1986) Proteases of Antarctic krill:a new system for effective enzymatic debridement of necrotic ulcerations. Experientia 42: 403–404. https://doi.org/10.1007/BF02118628

Herberger K, Franzke N, Blome C, Kirsten N and Augustin M. (2011). Efficacy, tolerability and patient benefit of ultrasound-assisted wound treatment versus surgical debridement: a randomized clinical study. Dermatology 222(3): 244–249. https://doi.org/10.1159/000326116

Hernández-Cortés P, Whitaker J R and García-Carreño F L. (1997). Purification and characterization of chymotrypsin from Penaeus vannamei (Crustacea: Decapoda). Journal of Food Biochemistry 21(1): 497–514. https://doi.org/10.1111/j.1745-4514.1997.tb00202.x

Honjo I, Kimura S and Nonaka M. (1990). Purification and characterization of trypsin-like enzyme from shrimp Penaeus indicus. Nippon Suisan Gakkaishi 56: 1627–1634. https://doi.org/10.2331/suisan.56.1627

Hwang K and Ivy A C. (2006). A review of the literature on the potential therapeutic significance of papain. Annals of the New York Academy of Sciences 54(2): 161–207. https://doi.org/10.1111/j.1749-6632.1951.tb39914.x

Jiang S T, Moody M and Chen H C. (1991). Purification and characterization of proteases from digestive tract of grass shrimp (Penaeus monodon). Journal of Food Science 56(2): 322–326. https://doi.org/10.1111/j.1365-2621.1991.tb05271.x

Johnston D, Hermans J M and Yellowlees D. (1995). Isolation and characterization of a trypsin from the slipper lobster, Thenus orientalis (Lund). Archives of Biochemistry and Biophysics 324(1): 35–40. https://doi.org/10.1006/abbi.1995.9933

Kim H R, Meyers S P and Godber J S. (1992). Purification and characterization of anionic trypsins from the hepatopancreas of crayfish, Procambarus clarkii. Comparative Biochemistry and Physiology 103(2): 391–398. https://doi.org/10.1016/0305-0491(92)90310-N

Kishimura H, Klomklao S, Nalinanon S, Benjakul S, Chun B and Adachi K. (2010). Comparative study on thermal stability of trypsin from the pyloric ceca of threadfin hakeling (Laemonema longipes). Journal of Food Biochemistry 34(1): 50–65. https://doi.org/10.1111/j.1745-4514.2009.00263.x

Klomklao S. (2008). Digestive proteinases from marine organisms and their applications. Songklanakarin Journal of Science and Technology 30(1): 37–46.

Krieger Y, Bogdanov-Berezovsky A, Gurfinkel R, Silberstein E, Sagi A and Rosenberg L. (2011). Efficacy of enzymatic debridement of deeply burned hands. Burns 38(1):108–112. https://doi.org/10.1016/j.burns.2011.06.002

Kristjansdottir S and Gudmundsdottir A. (2000). Propeptide dependent activation of the Antarctic krill euphauserase precursor produced in yeast. European Journal of Biochemistry 267(1): 2632–2639. https://doi.org/10.1046/j.1432-1327.2000.01273.x

Kubo M, Van De Water L, Plantefaber L C, Mosesson M W, Simon M, Tonnesen M G, Taichman L and Clark R A F. (2001). Fibrinogen and fibrin are anti-adhesive for keratinocytes: A mechanism for fibrin eschar slough during wound repair. Journal of Investigative Dermatology 117(6):1369–1381. https://doi.org/10.1046/j.0022-202x.2001.01551.x

Kuddus M. (2018). Cold-active enzymes in food biotechnology: An updated mini review. Journal of Applied Biology & Biotechnology 6(3): 58–63. https://doi.org/10.7324/JABB.2018.60310

Ladwig G P, Robson M C, Liu R, Kuhn M A, Muir D F and Schultz G S. (2002). Ratios of activated matrix metalloproteinase-9 to tissue inhibitor of matrix metalloproteinase-1 in wound fluids are inversely correlated with healing of pressure ulcers. Wound Repair and Regeneration 10(1): 26–37. https://doi.org/10.1046/j.1524-475X.2002.10903.x

Lam M Q, Nik Mut N N, Thevarajoo S, Chen S J, Selvaratnam C, Hussin H, Jamaluddin H and Chong C S. (2018). Characterization of detergent compatible protease from halophilic Virgibacillus sp. CD6. 3 Biotech 8: 104. https://doi.org/10.1007/s13205-018-1133-2.

Lu P J, Liu H C and Tsai I H. (1990). The midgut trypsins of shrimp (Penaeus monodon). High efficiency toward native protein substrates including collagens. Biological Chemistry Hoppe-Seyler 371(2): 851–859. https://doi.org/10.1515/bchm3.1990.371.2.851

McCarty S M and Percival S L. (2013). Proteases and delayed wound healing. Advanced of Wound Care (New Rochelle) 2(8): 438–447. https://doi.org/10.1089/wound.2012.0370

Mangioli M. (2004). Evaluation of an enzyme extracted from fish for topical use in the treatment of pressure sores (unpublished doctoral dissertation), University of Malta, Msida, Malta.

Marazzi M, Stefani A, Chiaratti A, Ordanini M N, Falcone L and Rapisarda V. (2006). Effect of enzymatic debridement with collagenase on acute and chronic hard-toheal wounds. Journal of Wound Care 15(5): 222–227. https://doi.org/10.12968/jowc.2006.15.5.26910

Maruthiah T, Somanath B, Jasmin J V, Immanuel G and Palavesam A. (2016). Production, purification and characterization of halophilic organic solvent tolerant protease from marine crustacean shell wastes and its efficacy on deproteinization. 3 Biotech 6: 157. https://doi.org/10.1007/s13205-016-0474-y

McCallon S K, Weir D and Lantis J C II. (2014). Optimizing wound bed preparation with collagenase enzymatic debridement. The Journal of the American College of Clinical Wound Specialists 6(1–2): 14–23. https://doi.org/10.1016/j.jccw.2015.08.003

McGuiness W, Vella E and Harrison D. (2004). Influence of dressing changes on wound temperature. Journal of Wound Care 13(9): 383–385. https://doi.org/10.12968/jowc.2004.13.9.26702

Mekkes J R, Le Poole I C, Das P K, Kammeyer A and Westerhof W. (1997). In vitro tissuedigesting properties of krill enzymes compared with fibrinolysin/DNAse, papain and placebo. International Journal of Biochemistry & Cell Biology 29(4): 703–706. https://doi.org/10.1016/S1357-2725(96)00168-9

Mekkes J R, Le Poole I C, Das P K, Bos J D and Westerhof W. (1998). Efficient debridement of necrotic wounds using proteolytic enzymes derived from Antarctic krill: A double-blind, placebo-controlled study in a standardized animal wound model. Wound Repair and Regeneration 6(1): 50–57. https://doi.org/10.1046/j.1524-475X.1998.60108.x

Michiels M S, Del Valle J C and López Mañanes A A. (2017). Trypsin and N-aminopeptidase (APN) activities in the hepatopancreas of an intertidal euryhaline crab: Biochemical characteristics and differential modulation by histamine and salinity. Comparative Biochemistry and Physiology 204A: 228–235. https://doi.org/10.1016/j.cbpa.2016.12.003

Molnár T, Vörös J, Szeder B, Takáts K, Kardos J, Katona G and Gráf L. (2013). Comparison of complexes formed by a crustacean and a vertebrate trypsin with bovine pancreatic trypsin inhibitor: The key to achieving extreme stability? FEBS Journal 280(22): 5750–5763. https://doi.org/10.1111/febs.12491

Nano M, Ricci E, Simone M and Lanfranco G. (1996). Collagenase therapy in the treatment of decubitus ulcers. In: Abatangelo G, Donati L and Vanscheidt W. (Eds.). Proteolysis in wound repair. Berlin: Springer. https://doi.org/10.1007/978-3-642-61130-8_6

Navarrete-del-Toro M A, García-Carreño F L, Hernández-Cortés P, Molnár T and Gráf L. (2015). Biochemical characterisation of chymotrypsin from the midgut gland of yellowleg shrimp, Penaeus californiensis. Food Chemistry 173:147–155. https://doi.org/10.1016/j.foodchem.2014.09.160

Nguyen T T, Barber A R, Corbin K and Zhang W. (2017). Lobster processing by-products as valuable bioresource of marine functional ingredients, nutraceuticals, and pharmaceuticals. Bioresources and Bioprocessing 4: 27. https://doi.org/10.1186/s40643-017-0157-5

Nigam Y and Morgan C (2016) Does maggot therapy promote wound healing? The clinical and cellular evidence. Journal of the European Academy of Dermatology and Venereology 30(5): 776–782. https://doi.org/10.1111/jdv.13534

Olivera-Nappa A, Reyes F, Andrews B A and Asenjo J A. (2013). Cold adaptation, Ca2+ dependency and autolytic stability are related features in a highly active coldadapted trypsin resistant to autoproteolysis engineered for biotechnological applications. PLoS ONE 8(8): e72355. https://doi.org/10.1371/journal.pone.0072355

Papaleo E, Pasi M, Riccardi L, Sambi I, Fantucci P and De Gioia L. (2008). Protein flexibility in psychrophilic and mesophilic trypsins. Evidence of evolutionary conservation of protein dynamics in trypsin-like serine-proteases. FEBS Letters 582(6): 1008–1018. https://doi.org/10.1016/j.febslet.2008.02.048

Patry J and Blanchette V. (2017). Enzymatic debridement with collagenase in wounds and ulcers: A systematic review and meta-analysis. International Wound Journal 14(6): 1055–1065. https://doi.org/10.1111/iwj.12760

Pavan R, Jain S, Shraddha and Kumar A. (2012). Properties and therapeutic application of bromelain: A review. Biotechnology Research International 2012: 976203. https://doi.org/10.1155/2012/976203

Perera E, Moyano F J, Díaz M, Perdomo-Morales R, Montero-Alejo V, Alonso-Jiménez E, Carrillo O and Galich G. (2008). Polymorphism and partial characterization of digestive enzymes in the spiny lobster Panulirus argus. Comparative Biochemistry and Physiology 150(3): 247–254. https://doi.org/10.1016/j.cbpb.2008.03.009

Perera E, Pons T, Hernández D, Moyano F J, Martínez-Rodríguez G and Mancera J M. (2010). New members of the brachyurins family in lobster include a trypsin-like enzyme with amino acid substitutions in the substrate-binding pocket. FEBS Journal 277(17): 3489–3501. https://doi.org/10.1111/j.1742-4658.2010.07751.x

Perera E, Rodríguez-Casariego J, Rodríguez-Viera L, Calero J, Perdomo-Morales R and Mancera J M. (2012). Lobster (Panulirus argus) hepatopancreatic trypsin isoforms and their digestion efficiency. Biological Bulletin 222(2): 158–170. https://doi.org/10.1086/BBLv222n2p158

Perera E, Rodríguez-Viera L, Perdomo-Morales R, Montero-Alejo V, Moyano FJ, MartínezRodríguez G and Mancera J M. (2015). Trypsin isozymes in the lobster Panulirus argus (Latreille, 1804): From molecules to physiology. Journal of Comparative Physiology B 185: 17–35. https://doi.org/10.1007/s00360-014-0851-y

Ramundo J and Gray M. (2008). Enzymatic wound debridement. Journal of Wound Ostomy & Continence Nursing 35(3): 273–280. https://doi.org/10.1097/01.WON.0000319125.21854.78

______. (2009). Collagenases for enzymatic debridement: A systematic review. Journal of Wound Ostomy & Continence Nursing 11: S4–S11. https://doi.org/10.1097/WON.0b013e3181bfdf83

Rao C N, Ladin D A, Liu Y Y, Chilukuri K, Hou Z Z and Woodley D T. (1995). Alpha 1-antitrypsin is degraded and non-functional in chronic wounds but intact and functional in acute wounds: The inhibitor protects fibronectin from degradation by chronic wound fluid enzymes. Journal of Investigative Dermatology 105(4): 572–578. https://doi.org/10.1111/1523-1747.ep12323503

Rascón A A, Gearin J, Isoe J and Miesfeld R L. (2011). In vitro activation and enzyme kinetic analysis of recombinant midgut serine proteases from the dengue vector mosquito Aedes aegypti. BMC Biochemistry 12: 43. https://doi.org/10.1186/1471-2091-12-43

Robichaud T K, Steffensen B and Fields G B. (2011). Exosite interactions impact matrix metalloproteinase collagen specificities. Journal of Biological Chemistry 286: 37535–37542. https://doi.org/10.1074/jbc.M111.273391

Rømer J, Bugge T H, Pyke C, Lund L R, Flick M J, Degen J L and Danù K. (1996). Impaired wound healing in mice with a disrupted plasminogen gene. Nature Medicine 2: 287–292. https://doi.org/10.1038/nm0396-287

Rossano R, Larocca M and Riccio P. (2011). Digestive enzymes of the crustaceans Munida and their application in cheese manufacturing: A review. Mar Drugs 9(7): 1220–1231. https://doi.org/10.3390/md9071220

Rudenskaya G, Isaev V A, Kalebina T S, Stepanov V M, Mal’tsev K V, Shvets S V, Luk’yanova N A, et al. (1998). Isolation and properties of trypsin PC from the king crab Paralithodes camtschatica. Russian Journal of Bioorganic Chemistry 24: 98–104.

Saarialho-Kere U K, Kovacs S O, Pentland A P, Olerud J E, Welgus H G and Parks W C. (1993). Cell-matrix interactions modulate interstitial collagenase expression by human keratinocytes actively involved in wound healing. Journal of Clinical Investigation 92: 2858–2866. https://doi.org/10.1172/JCI116906

Saarialho-Kere U K, Pentland A P, Birkedal-Hansen H, Parks W C and Welgus H G. (1994). Distinct populations of basal keratinocytes express stromelysin-1 and stromelysin-2 in chronic wounds. Journal of Clinical Investigation 94: 79–88. https://doi.org/10.1172/JCI117351

Saborowski R, Sahling G, Navarette del Toro M A, Walter I and Garc?a-Carreño F L. (2004). ?Stability and effects of organic solvents on endopeptidases from the gastric fluid of the marine crab Cancer pagurus. Journal of Molecular Catalysis B: Enzymatic 30(3–4): 109–118. https://doi.org/10.1016/j.molcatb.2004.04.002

Sainz J C and Córdova-Murueta J H. (2009). Activity of trypsin from Litopenaeus vannamei. Aquaculture 290(3–4): 190–195. https://doi.org/10.1016/j.aquaculture.2009.02.034

Sainz J C, García-Carreño F L and Hernandéz-Cortés P. (2004). Penaeus vannamei isotrypsins: Purification and characterization. Comparative Biochemistry and Physiology 138(2): 155–162. https://doi.org/10.1016/j.cbpc.2004.03.002

Satish L and Kathju S. (2010). Cellular and molecular characteristics of scarless versus fibrotic wound healing. Dermatology Research and Practice 2010: 790234. https://doi.org/10.1155/2010/790234

Schets F M, van den Berg H H, de Zwaan R, van Soolingen D and de Roda Husman A M. (2015). The microbiological quality of water in fish spas with Garra rufa fish, the Netherlands, October to November 2012. Euro Surveillance 20(19): 2–8. https://doi.org/10.2807/1560-7917.ES2015.20.19.21124

Schulz A, Perbix W, Shoham Y, Daali S, Charalampaki C, Fuchs PC and Schiefer J. (2017). Our initial learning curve in the enzymatic debridement of severely burned hands-Management and pit falls of initial treatments and our development of a post debridement wound treatment algorithm. Burns 43(2): 326–336. https://doi.org/10.1016/j.burns.2016.08.009

Sekizaki H, Itoh K, Murakami M, Toyota E and Tanizawa K. (2000). Anionic trypsin from chum salmon: Activity with p-amidinophenyl ester and comparison with bovine and Streptomyces griseus trypsins. Comparative Biochemistry and Physiology 127(3): 337–346. https://doi.org/10.1016/S0305-0491(00)00267-4

Sellos D and Van Wormhoudt A. (1992). Molecular cloning of a cDNA that encodes a serine protease with chymotryptic and collagenolytic activities in the hepatopancreas of the shrimp Penaeus vannamei (Crustacea, Decapoda). FEBS Letters 309: 219–224. https://doi.org/10.1016/0014-5793(92)80777-E

Senphan T, Benjakul S and Kishimura H. (2015). Purification and characterization of trypsin from hepatopancreas of Pacific White Shrimp. Journal of Food Chemistry 39(4): 388–397. https://doi.org/10.1111/jfbc.12147

Serrano A E. (2015). Trypsin-like activities in the mudcrab Scylla serrata, brine shrimp Artemia salina and rotifer Brachionus plicatilis. Der Pharma Chemica 7(9): 66–73.

Shahidi F and Kamil J Y V. (2001). Enzymes from fish and aquatic invertebrates and their application in the food industry. Trends in Food Science and Technology 12(12): 435–464. https://doi.org/10.1016/S0924-2244(02)00021-3

Shi L and Carson D. (2009). Collagenase santyl ointment: A selective agent for wound debridement. Journal of Wound Ostomy & Continence Nursing 36(6 Suppl): S12–S16. https://doi.org/10.1097/WON.0b013e3181bfdd1a

Shi L, Ermis R, Kiedaisch B and Carson D. (2010). The effect of various wound dressings on the activity of debriding enzymes. Advanced in Skin & Wound Care 23(10): 456–462. https://doi.org/10.1097/01.ASW.0000383224.64524.ae

Shi L, Ramsay S, Ermis R and Carson D. (2011). pH in the bacteria-contaminated wound and its impact on Clostridium histolyticum collagenase activity: Implications for the use of collagenase wound debridement agents. Journal of Wound Ostomy & Continence Nursing 38(5): 514–521. https://doi.org/10.1097/WON.0b013e31822ad034

Singer A J, Taira B R, Anderson R, McClain S A and Rosenberg L. (2011). Reepithelialization of mid-dermal porcine burns after rapid enzymatic debridement with Debrase®. Journal of Burn Care Research 32(6): 647–653. https://doi.org/10.1097/BCR.0b013e31822dc467

Smith A G, Powis R A, Pritchard D I and Britland S T. (2006). Greenbottle (Lucilia sericata) larval secretions delivered from a prototype hydrogel wound dressing accelerate the closure of model wounds. Biotechnology Progress 22(6): 1690–1696. https://doi.org/10.1021/bp0601600

Sriket C, Benjakul S, Visessanguan W, Hara K, Yoshida A and Liang X. (2012). Low molecular weight trypsin from hepatopancreas of freshwater prawn (Macrobrachium rosenbergii): Characteristics and biochemical properties. Food Chemistry 134(1): 351–358. https://doi.org/10.1016/j.foodchem.2012.02.173

Stefansson B, Helgadóttir L, Olafsdottir S, Gudmundsdottir A and Bjarnason J B. (2010). Characterization of cold-adapted Atlantic cod (Gadus morhua) trypsin I – kinetic parameters, autolysis and thermal stability. Comparative Biochemistry and Physiology 155B: 186–194. https://doi.org/10.1016/j.cbpb.2009.11.004

Telford G, Brown A P, Kind A, English J S and Pritchard D I. (2011). Maggot chymotrypsin I from Lucilia sericata is resistant to endogenous wound protease inhibitors. British Journal of Dermatology 164(1): 192–196. https://doi.org/10.1111/j.1365-2133.2010.10081.x

Telford G, Brown A P, Seabra R A, Horobin A J, Rich A, English J S and Pritchard D I. (2010). Degradation of eschar from venous leg ulcers using a recombinant chymotrypsin from Lucilia sericata. British Journal of Dermatology 163(3): 523–531. https://doi.org/10.1111/j.1365-2133.2010.09854.x

Thomas A M, Harding K G and Moore K. (1999). The structure and composition of chronic wound eschar. Journal of Wound Care 8(6): 285–287. https://doi.org/10.12968/jowc.1999.8.6.25881

Toyota E, Iyaguchi D, Sekizaki H, Itoh K and Tanizawa K. (2007). Kinetic properties of three isoforms of trypsin isolated from the pyloric caeca of chum salmon (Oncorhynchus keta). Biological and Pharmaceutical Bulletin 30(9): 1648–1652. https://doi.org/10.1248/bpb.30.1648

Trengove N J, Stacey M C, MacAuley S, Bennett N, Gibson J, Burslem F, Murphy G and Schultz G. (1999). Analysis of the acute and chronic wound environments: The role of proteases and their inhibitors. Wound Repair & Regeneration 7(6): 442–452. https://doi.org/10.1046/j.1524-475X.1999.00442.x

Vasconcelos A and Cavaco-Paulo A. (2011). Wound dressings for a proteolytic-rich environment. Applied Microbiology and Biotechnology 90: 445–460. https://doi.org/10.1007/s00253-011-3135-4

Vaughan D B, Grutter A S, Costello M J and Hutson K S. (2017). Cleaner fishes and shrimp diversity and a re-evaluation of cleaning symbioses. Fish and Fisheries 18: 698–716. https://doi.org/10.1111/faf.12198

Venkatesh R, Srimathi S, Yamuna A and Jayaraman G. (2005). Enhanced catalytic and conformational stability of Atlantic cod trypsin upon neoglycosylation. Biochimica et Biophysuca Acta 1722(2): 113–115. https://doi.org/10.1016/j.bbagen.2004.11.015

Vistnes L M, Lee R and Ksander G A. (1981). Proteolytic activity of blowfly larvae secretions in experimental burns. Surgery 90: 835–841.

Wang Y, Song Q and Zhang X H. (2016). Marine microbiological enzymes: Studies with multiple strategies and prospects. Marine Drugs 14(10): 171. https://doi.org/10.3390/md14100171

Westby M J, Norman G, Dumville J C, Stubbs N and Cullum N. (2016). Protease-modulating matrix treatments for healing venous leg ulcers. Cochrane Database of Systematic Reviews 12: CD011918. https://doi.org/10.1002/14651858.CD011918.pub2

Westerhof W, van Ginkel C J, Cohen E B and Mekkes J R. (1990). Prospective randomized study comparing the debriding effect of krill enzymes and a non-enzymatic treatment in venous leg ulcers. Dermatologica 181: 293–297. https://doi.org/10.1159/000247828

White M J V, Glenn M and Gomer R H. (2013). Trypsin potentiates human fibrocyte differentiation. PLoS ONE 8(8): e70795. https://doi.org/10.1371/journal.pone.0070795

Wu Z, Jiang G, Xiang P and Xu H. (2008). Anionic trypsin from North Pacific krill (Euphausia pacifica): Purification and characterization. International Journal of Peptide Research and Therapeutics 14: 113–120. https://doi.org/10.1007/s10989-007-9119-7

Yager D R, Chen S M, Ward S I, Olutoye O O, Diegelmann R F and Kelman Cohen I. (1997). Ability of chronic wound fluids to degrade peptide growth factors is associated with increased levels of elastase activity and diminished levels of proteinase inhibitors. Wound Repair & Regeneration 5(1): 23–32. https://doi.org/10.1046/j.1524-475X.1997.50108.x

Zeng R, Lin C, Lin Z, Chen H, Lu W, Lin C and Li H. (2018). Approaches to cutaneous wound healing: Basics and future directions. Cell Tissue Research 374:21–232. https://doi.org/10.1007/s00441-018-2830-1