Fatty Acid Composition of Hepatopancreas and Gonads in Both Sexes of Orange Mud Crab, Scylla olivacea Cultured at Various Water Flow Velocities

Main Article Content

Muhammad Taufik
Ismail Shahrul
Abdul Rahman Mohd Nordin
Mhd Ikhwanuddin
Ambok Bolong Abol-Munafii

Abstract


Nutritional quality of the hepatopancreas and gonads of orange portunid mud crab, Scylla olivacea was evaluated for each gender under four treatment of different water velocities (0, 20, 40 and 60 cm s–1), in terms of nutrient reserve and nutrient for reproduction. About 56 crabs were used in this study in which fatty acids composition was analysed using gas chromatography mass-spectrometry (GC-MS). For hepatopancreas analysis, monounsaturated fatty acids (MUFAs) were present in the highest fatty acids concentration, followed by polyunsaturated fatty acids (PUFAs) and, saturated fatty acids (SFAs). However, long-chain polyunsaturated fatty acids (LC-PUFAs) were displayed in low concentration in the hepatopancreas. Total fatty acid (TFAs) composition was significantly higher at moderate velocity of 20 cm s–1 compared to other water velocity treatments. For gonad analysis, 20 cm s–1 showed the highest TFA concentration of 93.34 mg g–1 while, the lowest concentration of 3.90 mg g–1 occurred at 0 cm s–1. There were significant differences in male and female crab’s fatty acids contents of gonads at all flow velocities challenged (p < 0.05). PUFAs and MUFAs were dominant while, SFAs were observed at low concentration. This study revealed that, concentration of PUFAs increased as gonad maturation increased. The decreasing concentration of hepatopancreas fatty acids over the culture period indicated that nutrient was shifted from the hepatopancreas, to be used as energy reserved to gonads for further growth of eggs and offspring. The linkages between water flow strength, hepatopancreas, and gonad fatty acids concentrations, is fundamental knowledge useful in establishing efficient habitat velocities selection which will improve aquaculture production of mud crabs with high quality broodstock.


 


Kualiti pemakanan hepatopancreas dan gonad ketam lumpur portunid jingga, Scylla olivacea dinilai untuk setiap jantina di bawah empat perlakuan dengan halaju air yang berbeza (0, 20, 40 dan 60 cm s–1), dari segi simpanan nutrien dan nutrien untuk pembiakan. Kira-kira 56 ketam digunakan dalam kajian ini di mana komposisi asid lemak dianalisis menggunakan kromatografi gas-spektometri jisim (GC-MS). Untuk analisis hepatopancreas, asid lemak tak tepu mono (MUFAs) terdapat dalam kepekatan asid lemak tertinggi, diikuti oleh asid lemak tak tepu ganda (PUFA) dan asid lemak tepu (SFA). Walau bagaimanapun, asid lemak tak tepu ganda rantai panjang (LC-PUFAs) ditunjukkan dalam kepekatan rendah pada hepatopankreas. Jumlah komposisi asid lemak (TFA) jauh lebih tinggi pada halaju sederhana 20 cm s–1 berbanding dengan rawatan halaju air yang lain. Untuk analisis gonad, 20 cm s–1 menunjukkan kepekatan TFA tertinggi 93.34 mg g–1 sementara, kepekatan terendah 3.90 mg g–1 berlaku pada 0 cm s–1. Terdapat perbezaan yang signifikan dalam kandungan asid lemak ketam jantan dan betina pada gonad pada semua cabaran halaju air (p < 0.05). PUFA dan MUFA dominan sementara, SFA diperhatikan pada kepekatan rendah. Kajian ini menunjukkan bahawa, kepekatan PUFA meningkat seiring bertambahnya kematangan gonad. Penurunan kepekatan asid lemak hepatopancreas selama tempoh kultur menunjukkan bahawa nutrien dialihkan dari hepatopancreas, untuk digunakan sebagai tenaga yang disediakan untuk gonad untuk pertumbuhan telur dan keturunan lebih lanjut. Hubungan antara kekuatan aliran air, hepatopankreas dan kepekatan asid lemak gonad, adalah pengetahuan asas yang berguna dalam mewujudkan pemilihan kecepatan habitat yang cekap yang akan meningkatkan pengeluaran akuakultur ketam lumpur dengan bahan makanan berkualiti tinggi.


Article Details

How to Cite
Fatty Acid Composition of Hepatopancreas and Gonads in Both Sexes of Orange Mud Crab, Scylla olivacea Cultured at Various Water Flow Velocities. (2020). Tropical Life Sciences Research, 31(2), 79–105. https://doi.org/10.21315/tlsr2020.31.2.5
Section
Original Article

References

Abdulkadir S and Tsuchiya M. (2008). One-step method for quantitative and qualitative analysis of fatty acids in marine animal samples. Journal of Experimental Marine Biology and Ecology 354: 1–8. https://doi.org/10.1016/j.jembe.2007.08.024

Abol-Munafi A B and Azra M N. (2018). Climate change and the crab aquaculture industry: problems and challenges. Journal of Sustainability Science and Management 13: 1–4. http://jssm.umt.edu.my/wp-content/uploads/sites/51/2018/12/Bab-1-13.2.pdf

Abol-Munafi A B, Mukrim M S, Amin R M, Azra M N, Azmie G and Ikhwanuddin M. (2016). Histological profile and fatty acid composition in hepatopancreas of blue swimming crab, Portunus pelagicus (Linnaeus, 1758) at different ovarian maturation stages. Turkish Journal of Fisheries and Aquatic Sciences 16: 251–258. https://doi.org/10.4194/1303-2712-v16_2_04

Abol-Munafi A B, Pilus N, Amin R M, Azra M N and Ikhwanuddin M. (2017). Digestive enzyme profiles from foregut contents of blue swimming crab, Portunus pelagicus from Straits of Johor, Malaysia. Journal of the Association of Arab Universities for Basic and Applied Sciences 24: 120–125. https://doi.org/10.1016/j.jaubas.2016.10.004

Alava V R, Quinitio E T, Pedro J B, Priolo F M, Orozco Z G and Wille M. (2007). Lipid and fatty acids in wild and pond-reared mud crab Scylla serrata during ovarian maturation and spawning. Aquaculture Research. 38: 1468–1477. https://doi.org/10.1111/j.1365-2109.2007.01793.x

Amin-Safwan A, Muhd-Farouk H, Mardhiyyah M P, Nadirah M, and Ikhwanuddin M. (2018). Does water salinity affect the level of 17?-estradiol and ovarian physiology of orange mud crab, Scylla olivacea (Herbst, 1796) in captivity? Journal of King Saud University Science 31(4): 827–835. https://doi.org/10.1016/j.jksus.2018.08.006

Amin-Safwan A, Muhd-Farouk H, Nadirah M and Ikhwanuddin M. (2016). Effect of water salinity on the external morphology of ovarian maturation stages of orange mud crab, Scylla olivacea (Herbst, 1796) in captivity. Pakistan Journal of Biological Sciences. 19: 219–226. http://dx.doi.org/10.3923/pjbs.2016.219.226

Amran A, Ariffin M H, Noordin N M and Ikhwanuddin M. (2018). Morphological, biochemical and histological analysis of mud crab ovary and hepatopancreas at different stages of development, Animal Reproduction Science 195: 274–283. https://doi.org/10.1016/j.anireprosci.2018.06.005

Arbelaez-Rojas G A and Moraes G. (2013). Effect of water velocity on intermediary metabolism of juvenile matrinxã fish (Brycon amazonicus). Revista Colombiana de Ciencias Pecuarias 26: 288–299. http://www.scielo.org.co/pdf/rccp/v26n4/v26n4a7.pdf

Azra M N and Ikhwanuddin M. (2015). Larval culture and rearing techniques of commercially important crab, Portunus pelagicus (Linnaeus, 1758): Present status and future prospects. Songklanakarin Journal of Science and Technology. 37: 135–145. https://rdo.psu.ac.th/sjstweb/journal/37-2/37-2-4.pdf

_____. (2016). A review of maturation diets for mud crab genus Scylla broodstock: present research, problems and future perspective, Saudi Journal of Biological Sciences 23: 257–267. https://doi.org/10.1016/j.sjbs.2015.03.011

Azra M N, Chen J C, Ikhwanuddin M and Abol-Munafi A B. (2018). Thermal tolerance and locomotor activity of blue swimmer crab Portunus pelagicus instar reared at different temperatures. Journal Thermal Biology. 74: 234–240. https://doi.org/10.1016/j.jtherbio.2018.04.002

Azra M N, Ikhwanuddin M and Abol-Munafi A B. (2019). Behavioural data on instar crab movement at different thermal acclimation. Data in Brief 22: 998–1002. https://doi.org/10.1016/j.dib.2019.01.026

Brown E J, Bruce M, Pether S and Herbert N A. (2011). Do swimming fish always grow fast? investigating the magnitude and physiological basis of exercise-induced growth in juvenile New Zealand yellowtail king fish, Seriola lalandi. Fish Physiology Biochemistry 37: 327–336. https://doi.org/10.1007/s10695-011-9500-5

Clark T D, Sandblom E and Jutfelt F. (2013). Aerobic scope measurements of fishes in anera of climate change: respirometry, relevance and recommendations. Journal of Experimental Biology 216: 2771–2782. https://doi.org/10.1242/jeb.084251

Fliss A E, Benzeno S, Rao J and Caplan A J. (2000). Control of estrogen receptor ligand binding by Hsp90. Journal of Steroid Biochemistry and Molecular Biology 72: 223–230. https://doi.org/10.1016/S0960-0760(00)00037-6

Ghazali A, Azra M N, Noordiyana M N, Abol-Munafi A B and Ikwanuddin M. (2017). Ovarian morphological development and fatty acids profile of mud crab (Scylla olivacea) fed with various diets. Aquaculture. 468: 45–52. https://doi.org/10.1016/j.aquaculture.2016.09.038

Gonzalez-Baro M D R and Pollero R J. (1988). Lipid characterization and distribution among tissues of the freshwater crustacean Macrobrachium borellii during anannual cycle. Comparative Biochemistry Physiology-B: Comparative Biochemistry 91: 711–715. https://doi.org/10.1016/0305-0491(88)90197-6

Hernandez M D, Mendiola P, Costa J and Zamora S. (2002). Effects of intensive exercise on rainbow trout growth, body composition and metabolic responses. Journal of Physiology and Biochemistry 58: 1–7. https://doi.org/10.1007/BF03179832

Hinch S G and Rand P S. (1998). Swim speeds and energy use of upriver-migrating sockeye salmon (Oncorhynchus nerka): role of local environment and fish characteristics. Canadian Journal of Fisheries and Aquatic Sciences 55: 1821–1831. https://doi.org/10.1139/f98-067

Hodgson S and Quinn T P. (2002). The timing of adult sockeye salmon migrations into fresh water: adaptations by populations to prevailing thermal regimes. Canadian Journal of Zoology 80: 542–555. https://doi.org/10.1139/z02-030

Hurtado M A, Racotta I S, Civera R, Ibarra L, Hernandez-Rodriguez M and Palacios E. (2007). Effect of hypo- and hypersaline conditions on osmolality and Na+/K+-ATPase activity in juvenile shrimp (Litopenaeus vannamei) fed low- and high-HUFA diets. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology 147: 703–710. https://doi.org/10.1016/j.cbpa.2006.07.002

Ikhwanuddin M, Bachok Z, Hilmi M G, Azmie G and Zakaria M Z. (2010a). Species diversity, carapace width-body weight relationship, size distribution and sex ratio of mud crab, genus Scylla from Setiu Wetlands of Terengganu coastal waters, Malaysia. Journal of Sustainability Science and Management 5: 97–109. http://jssm.umt.edu.my/files/2012/05/9.Dec10.pdf

Ikhwanuddin M, Bachok Z, Mohd-Faizal W W Y, Azmie G and Abol-Munafi A B. (2010b). Size of maturity of mud crab Scylla olivacea (Herbst, 1796) from mangrove areas of Terengganu coastal waters. Journal of Sustainability Science and Management 5:134–147. http://jssm.umt.edu.my/files/2012/05/12.Dec10.pdf

Ikhwanuddin M, Lan S S, Abdul Hamid N, Fatihah Zakaria S N, Azra, M N, Siti Aisah A and Abol-Munafi A B. (2015). The embryonic development of orange mud crab, Scylla olivacea (Herbst, 1796) held in the captivity. Iranian Journal of Fisheries Sciences 14: 885–895. http://jifro.ir/article-1-1115-en.pdf

Ikhwanuddin M, Azmie G, Nahar S F, Wee W, Azra M N and Abol-Munafi A B. (2018). Testis maturation stages of mud crab (Scylla olivacea) broodstock on different diets. Sains Malaysiana 47: 427–432. http://dx.doi.org/10.17576/jsm-2018-4703-01

Jobling M, Baarvik B M, Christiansen J S and Jorgensen E H. (1993). The effects of prolonged exercise training on growth performance and production parameters in fish. Aquaculture International 1: 95–111. https://doi.org/10.1007/BF00692614

Kunsook C and Dumrongrojwatthana P. (2017). Species diversity and abundance of marine crabs (portunidae: decapoda) from a collapsible crab trap fishery at Kung Krabaen Bay, Chanthaburi Province, Thailand. Tropical Life Sciences Research 28(1): 45–67. https://doi.org/10.21315/tlsr2017.28.1.4

Lee C G, Farrell A P, Lotto A, MacNutt M J, Hinch S G and Healey M C. (2003). The effect of temperature on swimming performance and oxygen consumption in adult sockeye (Oncorhynchus nerka) and coho (O. kisutch) salmon stocks. Journal of Experimental Biology 203: 3239–3251. https://doi.org/10.1242/jeb.00547

Lee J M, Lee H, Kang S and Park W J. (2016). Fatty acid desaturases, polyunsaturated fatty acid regulation, and biotechnological advances. Nutrients 8(1): 23–36. https://doi.org/10.3390/nu8010023

Liu M, Pan J, Liu Z, Cheng Y, Gong J and Wu X. (2018). Effect of estradiol on vitellogenesis and oocyte development of female swimming crab, Portunus trituberculatus. Aquaculture 486: 240–245. https://doi.org/10.1016/j.aquaculture.2017.12.034

Lytle J S, Lytle T F and Ogle L T. (1990). Polyunsaturated fatty acid profiles as comparative tool in assessing maturation diets of Penaeus vannamei. Aquaculture 89: 287–299. https://doi.org/10.1016/0044-8486(90)90133-8

Naceur H B, Jenhani A B R, El- Cafsi M and Romdhane M S. (2008). Determination of biological characteristics of Artemia salina (Crustacea: Anostraca) population from Sabkhet Sijoumi (NE Tunisia). Transitional Waters Bulletin 3: 65–74. https://doi.org/10.1285/i1825229Xv2n3p65

Naczk M, Williams J, Brennan K., Liyanapathirana C and Shahidi F. (2004). Compositional characteristics of green crab (Carcinus maenas). Food Chemistry 88(3): 429–434. https://doi.org/10.1016/j.foodchem.2004.01.056

Nagelkerken I, Blaber S J M, Bouillon S, Green P, Haywood M, Kirton L G, Meynecke J O, et al. (2008). The habitat function of mangroves for terrestrial and marine fauna: a review. Aquatic Botany 89: 155–185. https://doi.org/10.1016/j.aquabot.2007.12.007

Oufiero C E and Whitlow K R. (2016). The evolution of phenotypic plasticity in fish swimming. Current Zoology 62: 475–488. https://doi.org/10.1093%2Fcz%2Fzow084

Palstra A P and Planas J V. (2011). Fish under exercise. Journal of Fishery Physiological and Biochemical 37: 259–272. https://doi.org/10.1007/s10695-011-9505-0

Qiu X. (2003). Biosynthesis of docosahexaenoic acid (DHA, 22:6–4, 7, 10, 13, 16, 19): two distinct pathways. Prostaglandins, Leukotrienes and Essential Fatty Acids 68: 181–186. https://doi.org/10.1016/S0952-3278(02)00268-5

Randall D and Brauner C. (1991). Effects of environmental factors on exercise in fish. Journal of Experimental Biology 160: 113–126. http://jeb.biologists.org/content/160/1/113.full.pdf

Ravid T, Tietz A, Khayat M, Boehm E, Michelis R and Lubzens E. (1999). Lipid accumulation in the ovaries of a marine shrimp Penaeus semisulcatus (de Haan). Journal of Experimental Biology 202: 1819–1829. http://jeb.biologists.org/content/jexbio/202/13/1819.full.pdf

Sarapio E, Santos J T, Model J F A, De Frage L S, Vinagre A S, Martins T L, Da Silva R S M and Trapp M. (2017). Glycerogenesis in the hepatopancreas of the crab Neohelice granulat: diet, starvation and season effects. Journal of Comparative Biochemical and Physiologycal B 211: 1–7. https://doi.org/10.1016/j.cbpb.2017.02.004

Tantikitti C, Konoona R and Pongmaneerat J. (2015). Fatty acid profiles and carotenoids accumulation in hepatopancreas and ovary of wild female mud crab (Scylla paramamosain, Estampador, 1949). Songklanakarin Journal of Sciences and Technology 37: 609–616. http://rdo.psu.ac.th/sjstweb/journal/37-6/37-6-1.pdf

Taufik M, Bachok Z, Azra M N and Ikhwanuddin M. (2014). Identification and determination of the fatty acid composition of Portunus pelagicus in Setiu Wetland Areas, Terengganu, Malaysia by GC-MS. Middle-East Journal of Scientific Research 21(10):1908–1915. https://doi.org/10.5829/idosi.mejsr.2014.21.10.84143

_____. (2016). Effects of various microalgae on fatty acid composition and survival rate of the blue swimming crab Portunus pelagicus larvae. Indian Journal of Geo Marine Sciences 45: 1512–1521. http://nopr.niscair.res.in/bitstream/123456789/38612/1/IJMS%2045%2811%29%201512-1521.pdf

Taufik M, Shahrul I, Ikhwanuddin M and Ambok Bolong A M. (2019). Experimental data on behavioral, hepato-gonado-somatic indexes and total lipid of mud crab, Scylla olivacea at different velocity levels. Data in Brief 25: 104–205. https://doi.org/10.1016/j.dib.2019.104205

Teshima S and Kanazawa A. (1983). Variation in lipid compositions during the ovarian maturation of the prawn (Penaeus japonicas). Journal of Bulletin Japanese Chemistry Social Science Fishery 49(6): 957–962. https://doi.org/10.2331/suisan.49.957

Venegas-Caleron M, Sayanova O and Napier J A. (2010). An alternative to fish oils: metabolic engineering of oil-seed crops to produce omega-3 long chain polyunsaturated fatty acids. Progress in Lipid Research 49: 108–119. https://doi.org/10.1016/j.plipres.2009.10.001

Wang W, Wu X, Liu Z, Zheng, H and Cheng Y. (2014). Insights into hepatopancreatic functions for nutrition metabolism and ovarian development in the crab Portunus trituberculatus: Gene discovery in the comparative transcriptome of different hepatopancreas stages. PLoS One 9(1): e84921. https://doi.org/10.1371/journal.pone.0084921

Wu X, Zhou B, Cheng Y, Zeng C, Wang C and Feng, L. (2010). Comparison of gender differences in biochemical composition and nutritional value of various edible parts of the blue swimmer crab. Journal of Food Composition Analysis 23: 154–159. https://doi.org/10.1016/j.jfca.2009.08.007

Wu L T and Chu K H. (2008). Characterization of heat shock protein 90 in the shrimp Metapenaeus ensis: Evidence for its role in the regulation of vitellogenin synthesis. Molecular Reproduction and Development 75: 952–959. https://doi.org/10.1002/mrd.20817

Yano I and Hoshino R. (2006). Effects of 17 beta-estradiol on the vitellogenin synthesis and oocyte development in the ovary of kuruma prawn (Marsupenaeus japonicus). Comparative Biochemistry and Physiology - Part A: Molecular & Integrative Physiology 144: 18–23. https://doi.org/10.1016/j.cbpa.2006.01.026

Ying X P, Yang W X and Zhang Y P. (2006). Comparative studies on fatty acid composition of the ovaries and hepatopancreas at different physiological stages of the Chinese mitten crab. Aquaculture 256: 617–623. https://doi.org/10.1016/j.aquaculture.2006.02.045

Zhang K, Liu H, Li Y, Xu H, Shen J, Rhome J and Smith III T J. (2012). The role of mangroves in attenuating storm surges. Estuarine Coastal and Shelf Science 102–103:11–23. https://doi.org/10.1016/j.ecss.2012.02.021