In Vitro Efficacy of Aqueous and Methanol Extract of Cassia siamea Against the Motility of Caenorhabditis elegans

Main Article Content

Haladu Ali Gagman
Nik Ahmad Irwan Izzauddin Nik Him
Hamdan Ahmad
Shaida Fariza Sulaiman
Rahmad Zakaria
Farah Haziqah Meor Termizi

Abstract


Gastrointestinal nematode infections can cause great losses in revenue due to decrease livestock production and animal death. The use of anthelmintic to control gastrointestinal nematode put a selection pressure on nematode populations which led to emergence of anthelmintic resistance. Because of that, this study was carried out to investigate the efficacy of aqueous and methanol extract of Cassia siamea against the motility of C. elegans Bristol N2 and C. elegans DA1316. Caenorhabditis elegans Bristol N2 is a susceptible strain and C. elegans DA1316 is an ivermectin resistant strain. In vitro bioassay of various concentrations of (0.2, 0.6, 0.8, 1.0 and 2.0 mg mL–1) aqueous and methanol extracts of C. siamea was conducted against the motility of L4 larvae of C. elegans Bristol N2 and C. elegans DA1316. The L4 larvae were treated with 0.02 ?g mL–1 of ivermectin served as positive control while those in M9 solution served as negative control. The activity of the extracts was observed after 24 h and 48 h. A significant difference was recorded in the extract performance compared to control at (P < 0.001) after 48 h against the motility of the larvae of both strains. The methanol extracts inhibited the motility of C. elegans Bristol N2 by 86.7% as well as DA1316 up to 84.9% at 2.0 mg mL–1 after 48 h. The methanol extract was more efficient than aqueous extract (P < 0.05) against the motility of both strains of C. elegans. Cassia siamea may be used as a natural source of lead compounds for the development of alternative anthelmintic against parasitic nematodes as well ivermectin resistant strains of nematodes.


 


Jangkitan nematod gastrousus boleh menyebabkan kerugian besar hasil disebabkan oleh pengurangan pengeluaran dan kematian haiwan. Penggunaan antelmintik untuk kawalan nematod gastrousus telah menyebabkan tekanan pilihan yang menjurus kepada kemunculan kerintangan antelmintik. Oleh sebab itu, kajian ini dijalankan untuk mengkaji keberkesanan ekstrak akueus dan metanol Cassia siamea terhadap motiliti C. elegans Bristol N2 dan C. elegans DA1316. Caenorhabditis elegans Bristol N2 merupakan strain rentang dan C. elegans DA1316 merupakan strain rintang ivermektin. Bioasai in vitro kepelbagaian kepekatan (0.2, 0.6, 0.8, 1.0 dan 2.0 mg mL–1) ekstrak akueus dan ekstrak metanol C. siamea dijalankan terhadap motiliti L4 C. elegans Bristol N2 dan C. elegans DA1316. Larva L4 yang dirawat dengan 0.02 ?g mL–1 ivermektin dijadikan sebagai kawalan positif manakala, larutan M9 dijadikan sebagai kawalan negatif. Aktiviti ekstrak itu diperhatikan selepas 24 jam dan 48 jam. Perbezaan yang signifikan dicatatkan pada prestasi ekstrak berbanding dengan kawalan pada (P < 0.001) selepas 48 jam terhadap motiliti larva bagi kedua strain. Ekstrak metanol merencat motiliti larva C. elegans Bristol N2 86.7% dan C. elegans DA1316 sehingga 84.9% selepas 48 jam pada kepekatan 2.0 mg mL–1. Ekstrak metanol lebih berkesan daripada ekstrak akueus (P < 0.05) terhadap motiliti kedua-dua jenis C. elegans. Cassia siamea boleh digunakan sebagai sumber semula jadi sebatian utama untuk pembangunan anthelmin alternatif terhadap nematod parasit dan juga nematod rintang ivermektin.


Article Details

How to Cite
In Vitro Efficacy of Aqueous and Methanol Extract of Cassia siamea Against the Motility of Caenorhabditis elegans. (2020). Tropical Life Sciences Research, 31(3), 145–159. https://doi.org/10.21315/tlsr2020.31.3.10
Section
Short Communication

References

Agyare C, Spiegler V, Sarkodie H, Alex Asase A, Liebau E and Hensel A. (2014). An ethnopharmacological survey and in vitro confirmation of medicinal plants as anthelmintic remedies in the Ashanti region, in the central part of Ghana. Journal of Ethnopharmacology 158: 255–263.

Ahmed A S, McGaw L J, Moodley N, Naidoo N and Eloff J N. (2014). Cytotoxic, antimicrobial, antioxidant, antilipoxygenase activities and phenolic composition of Ozoroa and Searsia species (Anacardiaceae) used in South African traditional medicine for treating diarrhea. South African Journal of Botany 95: 9–18. https://doi.org/10.1016/j.sajb.2014.07.013

Aiello A E, Cimiotti J, Della-Latta P and Larson E L. (2003). A comparison of the bacteria found on the hands of ’homemakers’ and neonatal intensive care unit nurses. J Hosp Infect. 54(4): 310–315. https://doi.org/10.1016/S0195-6701(03)00146-4

Barnett R E, Bailey D C, Hatfield H E and Fitsanakis V A. (2016). Caenorhabditis elegans: A model organism for nutraceutical safety and toxicity evaluation. In: Gupta R C (ed.). Nutraceuticals,: Efficacy, safety and toxicity, London: Academic Press, 349–351. https://doi.org/10.1016/B978-0-12-802147-7.00026-7

Baugh L R. (2013). To grow or not to grow: Nutritional control of development during Caenorhabditis elegans L1 arrest. Genetics 194(3): 539–555. https://doi.org/10.1534/genetics.113.150847

Blaxter M, Ley P, Garey J R, Liu L X, Scheldeman P, Vierstraete A, Vanfleteren J et al. (1998). A molecular evolutionary framework for the Phylum nematoda. Nature 392(6671): 71–75. https://doi.org/10.1038/32160

Dailey A and Vuong Q V. (2015). Effect of extraction solvents on the recovery of bioactive compounds and antioxidant properties from macadamia (Macadamia tetraphylla) skin waste. Cogent Food & Agriculture 1(1): 1115646. https://doi.org/10.1080/23311932.2015.1115646

Debiage R R, Gonçalves F F, Pereira A R, da Silva R G, Yoshihara E and de Mello Peixoto E T. (2016). Anthelmintic potential of Psidium guajava in sheep. Planta Medica 81(S01): P997. https://doi.org/10.1055/s-0036-1596982

Dent J A, Smith M M, Vassilatis D K and Avery L. (2000). The genetics of ivermectin resistance in Caenorhabditis elegans. Proceedings of the National Academy of Sciences USA 97(6): 2674–2679. https://doi.org/10.1073/pnas.97.6.2674

Gaziano T A, Abrahams-Gessel S, Denman C A, Montano C M, Khanam M, Puoane T and Levitt N S. (2015). An assessment of community health workers’ ability to screen for cardiovascular disease risk with a simple, non-invasive risk assessment instrument in Bangladesh, Guatemala, Mexico, and South Africa: An observational study. The Lancet Global Health 3(9): e556–e563. https://doi.org/10.1016/S2214-109X(15)00143-6

Holden-Dye L and Walker R. (2014). Anthelmintic drugs and nematocides: Studies in Caenorhabditis elegans. In: WormBook (ed.). The C. elegans Research Community, WormBook, 1–29. https://doi.org/10.1895/wormbook.1.143.2

Jones A K, Buckingham S D and Sattelle D B. (2005). Chemistry to gene screens in Caenorhabditis elegans. Nature Review: Drug Discovery 4: 321–330. https://doi.org/10.1038/nrd1692

Kamagaté M, Koffi C, Kouamé N, Akoubet A, Alain N, Yao R and Die H. (2014). Ethnobotany, phytochemistry, pharmacology and toxicology profiles of Cassia siamea Lam. Journal of Phytopharmacol 3(1): 57–76.

Katiki L M, Ferreira J F, Zajac A M, Masler C, Lindsay D S, Chagas A C S and Amarante A F. (2011). Caenorhabditis elegans as a model to screen plant extracts and compounds as natural anthelmintics for veterinary use. Veterinary Parasitology 182(2): 264–268. https://doi.org/10.1016/j.vetpar.2011.05.020

Kong J, Zhao R, Bai Y, Li G, Zhang C and Li F. (2014). Study on the formation of phenols during coal flash pyrolysis using pyrolysis-GC/MS. Fuel Processing Technology 127: 41–46. https://doi.org/10.1016/j.fuproc.2014.06.004

Kumarasingha R, Palombo E, Bhave M, Yeo T, Lim D, Tu C and Boag P. (2014). Enhancing a search for traditional medicinal plants with anthelmintic action by using wild type and stress reporter Caenorhabditis elegans strains as screening tools. International Journal for Parasitology 44(5): 291–298. https://doi.org/10.1016/j.ijpara.2014.01.008

Lienou L, Telefo P, Njimou J, Nangue C, Bayala B, Goka S and Mbemya J. (2015). Effect of the aqueous extract of Senecio biafrae (Oliv. & Hiern) J. Moore on some fertility parameters in immature female rat. Journal of Ethnopharmacology 161: 156–162. https://doi.org/10.1016/j.jep.2014.12.014

Machado A R T, Ferreira S R, Medeiros F d S, Fujiwara R T, Filho J D d S and Pimenta L P S. (2015). Nematicidal activity of Annona crassiflora leaf extract on Caenorhabditis elegans. Parasites Vectors 8: 113. https://doi.org/10.1186/s13071-015-0708-6

Maobe M A, Gatebe E, Gitu L and Rotich H. (2013). Preliminary phytochemical screening of eight selected medicinal herbs used for the treatment of diabetes, malaria and pneumonia in Kisii region, southwest Kenya. European Journal of Applied Sciences 5(10): 01–06.

Ndjonka D, Abladam E, Djafsia B, Ajonina-Ekoti I, Achukwi M and Liebau E. (2014). Anthelmintic activity of phenolic acids from the axlewood tree Anogeissus leiocarpus on the filarial nematode Onchocerca ochengi and drug-resistant strains of the free-living nematode Caenorhabditis elegans. Journal of Helminthology 88(04): 481–488. https://doi.org/10.1017/S0022149X1300045X

Ndjonka D, Agyare C, Lüersen K, Djafsia B, Achukwi D, Nukenine E and Liebau E. (2011). In vitro activity of Cameroonian and Ghanaian medicinal plants on parasitic (Onchocerca ochengi) and free-living (Caenorhabditis elegans) nematodes. Journal of Helminthology 85(3): 304–312. https://doi.org/10.1017/S0022149X10000635

Ntandou G N, Banzouzi J, Mbatchi B, Elion-Itou R, Etou-Ossibi A, Ramos S and Ouamba J. (2010). Analgesic and anti-inflammatory effects of Cassia siamea Lam. stem bark extracts. Journal of Ethnopharmacology 127(1): 108–111. https://doi.org/10.1016/j.jep.2009.09.040

Oliveira L, Bevilaqua C, Costa C, Macedo I, Barros R, Rodrigues A and Vieira L. (2009). Anthelmintic activity of Cocos nucifera L. against sheep gastrointestinal nematodes. Veterinary Parasitology 159(1): 55–59. https://doi.org/10.1016/j.vetpar.2008.10.018

Orwa C, Mutua A, Kindt R, Jamnadass R and Simons A. (2009). Agroforestree database: A tree species reference and selection guide version 4.0. World Agroforestry Centre ICRAF, Nairobi, KE.

Phaiphan A, Baharin B S, Tan C P, Rahman R A and Ganesan P. (2014). Antioxidant and antibacterial activities of different solvent extractions from Cassia siamea (Lamk.) leaves. Journal of Chemical and Pharmaceutical Research 6(4): 655–662.

Phiri A M, Pomerai D, Buttle D J and Behnke J M B. (2014). Developing a rapid throughput screen for detection of nematicidal activity of plant cysteine proteinases: The role of Caenorhabditis elegans cystatins. Parasitology 141(2): 164–180. https://doi.org/10.1017/S0031182013001364

Piña-Vázquez D M, Mayoral-Peña Z, Gómez-Sánchez M, Salazar-Olivo L A and ArellanoCarbajal F. (2017). Anthelmintic effect of Psidium guajava and Tagetes erecta on wild-type and Levamisole-resistant Caenorhabditis elegans strains. Journal of Ethnopharmacology 202: 92–96. https://doi.org/10.1016/j.jep.2017.03.004

Radman I, Greiss S and Chin J W. (2013). Efficient and rapid C. elegans transgenesis by bombardment and hygromycin B selection. PLOS ONE 8(10): e76019. https://doi.org/10.1371/journal.pone.0076019

Simpkin K G and Coles G C. (1981). The use of Caenorhabditis elegans for anthelmintic screening. Journal of Chemical Technology & Biotechnology 31: 66–69.

Singh S, Singh S K and Yadav A. (2013). A review of Cassia species: Pharmacological, traditional and medicinal aspects in various countries. American Journal of Phytomedicine and Clinical Therapeutics 1(3): 291–312.

Tariq K A, Chishti M Z, Ahmad F and Shawl A S. (2009). Anthelmintic activity of extracts of Artemisia absinthium against ovine nematodes. Veterinary Parasitology 160(1–2): 83–88. https://doi.org/10.1016/j.vetpar.2008.10.084

Tiwari P, Kumar B, Kaur M, Kaur G and Kaur H. (2011). Phytochemical screening and extraction: A review. Internationale Pharmaceutica Sciencia 1(1): 98–106.

Wang G-X, Han J, Zhao L-W, Jiang D-X, Liu Y-T and Liu X-L. (2010). Anthelmintic activity of steroidal saponins from Paris polyphylla. Phytomedicine 17(14): 1102–1105. https://doi.org/10.1016/j.phymed.2010.04.012

Wimmersberger D, Tritten L and Keiser J. (2013). Development of an in vitro drug sensitivity assay for Trichuris muris first-stage larvae. Parasites Vectors 6: 42. https://doi.org/10.1186/1756-3305-6-42

Zhang S-q, Bi H-m and Liu C-j. (2007). Extraction of bio-active components from Rhodiola sachalinensis under ultrahigh hydrostatic pressure. Separation and Purification Technology 57(2): 277–282. https://doi.org/10.1016/j.seppur.2007.04.022