Genetic Diversity of Pineapple (Ananas comosus) Germplasm in Malaysia Using Simple Sequence Repeat (SSR) Markers
Main Article Content
Abstract
Assessments of genetic diversity have been claimed to be significantly efficient in utilising and managing resources of genetic for breeding programme. In this study, variations in genetic were observed in 65 pineapple accessions gathered from germplasm available at Malaysian Agriculture Research and Development Institute (MARDI) located in Pontian, Johor via 15 markers of simple sequence repeat (SSR). The results showed that 59 alleles appeared to range from 2.0 to 6.0 alleles with a mean of 3.9 alleles per locus, thus displaying polymorphism for all samples at a moderate level. Furthermore, the values of polymorphic information content (PIC) had been found to range between 0.104 (TsuAC035) and 0.697 (Acom_9.9), thus averaging at the value of 0.433. In addition, the expected and the observed heterozygosity of each locus seemed to vary within the ranges of 0.033 to 0.712, and from 0.033 to 0.885, along with the average values of 0.437 and 0.511, respectively. The population structure analysis via method of delta K (?K), along with mean of L (K) method, revealed that individuals from the germplasm could be divided into two major clusters based on genetics (K = 2), namely Group 1 and Group 2. As such, five accessions (Yankee, SRK Chalok, SCK Giant India, SC KEW5 India and SC1 Thailand) were clustered in Group 1, while the rest were clustered in Group 2. These outcomes were also supported by the dendrogram, which had been generated through the technique of unweighted pair group with arithmetic mean (UPGMA). These analyses appear to be helpful amongst breeders to maintain and to manage their collections of germplasm. Besides, the data gathered in this study can be useful for breeders to exploit the area of genetic diversity in estimating the level of heterosis.
Penilaian ke atas diversiti genetik adalah penting bagi penggunaan dan pengurusan sumber genetik yang efisien dalam program pembaikbakaan. Kepelbagaian genetik dapat diperhatikan pada 65 aksesi nanas yang dikumpulkan daripada koleksi janaplasma MARDI yang berada di Pontian, Johor dengan menggunakan 15 penanda simple sequence repeat (SSR). Keputusan menunjukkan sejumlah 59 alel antara 2 hingga 6 dengan purata sebanyak 3.93 alel bagi setiap lokus, dan ini menunjukkan tahap polimorfisma yang sederhana bagi seluruh individu. Selain itu, nilai kandungan maklumat polimorfisma (PIC) yang ditemui adalah antara 0.104 (TsuAC035) hingga 0.697 (Acom_9.9) dengan jumlah purata sebanyak 0.433. Tambahan pula, keheterozigotan yang dijangka dan diperhatikan adalah berbeza antara 0.033 hingga 0.885 dan 0.033 hingga 0.712 dengan purata masing-masing antara 0.511 dan 0.437. Analisa struktur populasi menggunakan kaedah delta K (?K) serta kaedah purata L (K) menunjukkan bahawa individu daripada janaplasma nanas ini dapat dibahagikan kepada dua kumpulan genetik utama (K = 2) yang diberi nama Kumpulan 1 dan Kumpulan 2. Lima aksesi (Yankee, SRK Chalok, SCK Giant India, SC KEW5 India dan SC1 Thailand) telah dikumpulkan di dalam Kumpulan 1 manakala yang selebihnya di dalam Kumpulan 2. Penemuan ini turut disokong oleh dendrogram yang dibina menggunakan kaedah unweighted pair group with arithmetic mean (UPGMA). Analisa ini sangat membantu pembiakbaka dalam mengekalkan dan mengurus koleksi janaplasma mereka. Di samping itu, data-data yang dikumpulkan dalam kajian ini sangat berguna kepada pembiakbaka dalam mengeksploitasikan diversiti genetik bagi menganggar tahap heterosis.
Article Details
This work is licensed under a Creative Commons Attribution 4.0 International License.
References
Carvalho G R and Pitcher T J. (2012). Molecular genetics in fisheries. Netherland: Springer Science & Business Media.
Cock V O, William F H, Derek P M, Wills and Peter S. (2004). Program note MICROCHECKER: Software for identifying and correcting genotyping errors in microsatellite data. Molecular Ecology Notes 4: 535–538. https://doi.org/10.1111/j.1471-8286.2004.00684.x
Evanno G S, Regnaut S and Goudet J. (2005). Detecting the number of clusters of individuals using the software structure: A simulation study. Molecular Ecology 14: 2611–2620. https://doi.org/10.1111/j.1365-294X.2005.02553.x
Feng S H, Tong Y C, Wang J, Chen Y, Sun G and Wu Y. (2013). Development of pineapple microsatellite markers and germplasm genetic diversity analysis. BioMed Research International 2013: 1–11. https://doi.org/10.1155/2013/317912
Glaubitz J C. (2004). Convert: A user-friendly program to reformat diploid genotypic data for commonly used population genetic software packages. Molecular Ecology Resources 4(2): 309–310. https://doi.org/10.1111/j.1471-8286.2004.00597.x
Hu B, El Hajj N, Sittler S, Lammert N, Barnes R and Meloni-Ehrig A. (2012). Gastric cancer: Classification, histology and application of molecular pathology. Journal of Gastrointestinal Oncology 3(3): 251. https://doi.org/10.3978/j.issn.2078-6891.2012.021
International Plant Genetic Resource Institute (IPGRI). (1993). Diversity for development. Rome, Italy: International Plant Genetic Resources Institute.
Kalia R K, Rai M K, Kalia S, Singh R and Dhawan A K. (2011). Microsatellite markers: An overview of the recent progress in plants. Euphytica 177(3): 309–334. https://doi.org/10.1007/s10681-010-0286-9
Kinsuat M J and Kumar S V. (2007). Polymorphic microsatellite and cryptic simple repeat sequence markers in pineapples (Ananas comosus var. comosus). Molecular Ecology Resources 7(6): 1032–1035. https://doi.org/10.1111/j.1471-8286.2007.01764.x
Kumar S, Stecher G and Tamura K. (2016). MEGA7: Molecular Evolutionary Genetics Analysis version 7.0 for bigger datasets. Molecular Biology and Evolution 33(7): 1870–1874. https://doi.org/10.1093/molbev/msw054
Lin Y S, Kuan C S, Weng I S and Tsai C C. (2015). Cultivar identification and genetic relationship of pineapple (Ananas comosus) cultivars using SSR markers. Genetics and Molecular Research 14(4): 15035–15043. https://doi.org/10.4238/2015.November.24.11
Liu K and Muse S V. (2005). Power marker: Integrated analysis environment for genetic marker data. Bioinformatics 21: 2128–2129. https://doi.org/10.1093/bioinformatics/bti282
Paz E Y, Gil K, Rebolledo L, Rebolledo A, Uriza D, Martínez O and Simpson J. (2012). Genetic diversity of Cuban pineapple germplasm assessed by AFLP markers. Crop Breeding and Applied Biotechnology 12(2): 104–110. https://doi.org/10.1590/S1984-70332012000200002
Pervaiz Z H, Rabbani M A, Khaliq I, Pearce S R and Malik S A. (2010). Genetic diversity associated with agronomic traits using microsatellite markers in Pakistani rice landraces. Electronic Journal of Biotechnology 13(3): 4–5. https://doi.org/10.2225/vol13-issue3-fulltext-5
Pritchard J K, Stephens M and Donnelly P. (2000). Inference of population structure using multilocus genotype data. Genetics 155(2): 945–959.
Randhawa H S, Asif M, Pozniak C, Clarke J M, Graf R J, Fox S L and Cuthbert R D. (2013). Application of molecular markers to wheat breeding in Canada. Plant Breeding 132(5): 458–471. https://doi.org/10.1111/pbr.12057
Rekha S, Brijesh K, Reena A, Sonika A, Mishra A K and Tantia M S. (2016). Genetic diversity estimates point to immediate efforts for conserving the endangered Tibetan sheep of India. Meta Gene 8: 14–20. https://doi.org/10.1016/j.mgene.2016.01.002
Rodríguez D, Grajal-Martín M J, Isidrón M, Petit S and Hormaza J I. (2013). Polymorphic microsatellite markers in pineapple (Ananas comosus (L.) Merrill). Scientia Horticulturae 156: 127–130. https://doi.org/10.1016/j.scienta.2013.03.026
Shoda M, Urasaki N, Sakiyama S, Terakami S, Hosaka F, Shigeta N and Yamamoto T. (2012). DNA profiling of pineapple cultivars in Japan discriminated by SSR markers. Breeding Science 62(4): 352–359. https://doi.org/10.1270/jsbbs.62.352
Upadhyaya H D, Gowda C L L and Sastry D V S S R. (2008). Plant genetic resources management: Collection, characterization, conservation and utilization. International Crops Research Institute for the Semi-Arid Tropics (ICRISAT). Journal of SAT Agriculture Research 6: 1–15.
Vanijajiva O. (2012). Assessment of genetic diversity and relationships in pineapple cultivars from Thailand using ISSR marker. Journal of Agricultural Technology 8(5): 1829–1838.
Wöhrmann T and Weising K. (2011). In silico mining for simple sequence repeat loci in a pineapple expressed sequence tag database and cross-species amplification of EST-SSR markers across Bromeliaceae. Theoretical and Applied Genetics 123(4): 635–647. https://doi.org/10.1007/s00122-011-1613-9
Yeh F C, Yang R C and Boyle T. (1999). POPGENE Version 1.32: Microsoft window-based freeware for population genetics analysis. University of Alberta, Edmonton.
Zhang P, Li J, Li X, Liu X, Zhao X and Lu Y. (2011). Population structure and genetic diversity in a rice core collection (Oryza sativa L.) investigated with SSR markers. PLOS ONE 6(12): e27565. https://doi.org/10.1371/journal.pone.0027565
Zhang Q, Li J, Zhao Y, Korban S S and Han Y. (2012). Evaluation of genetic diversity in Chinese wild apple species along with apple cultivars using SSR markers. Plant Molecular Biology Reporter 30(3): 539–546. https://doi.org/10.1007/s11105-011-0366-6
Zhanguo X and Junping C. (2012). A high throughput DNA extraction method with high yield and quality. Plant Methods 8: 26.