Geoaccumulation Index and Enrichment Factor of Arsenic in Surface Sediment of Bukit Merah Reservoir, Malaysia

Main Article Content

Mohd Ilman Che Abdullah
Amir Shah Ruddin Md Sah
Hazzeman Haris

Abstract

An investigation study was conducted in Bukit Merah Reservoir (BMR) for the assessment of arsenic concentration in the surface sediment in 23 sampling stations. The sediment samples were digested and analysed for arsenic using Inductively Coupled Plasma-Optical Emission Spectrometry (ICP-OES). Sediment parameters such as pH (4.42 ± 0.71), redox potential (121.77 ± 42.45 mV), conductivity (205.7 ± 64.07 ?S cm–1) and organic matter (25.35 ± 9.34%) were also examined. The main objectives of this study are to determine the arsenic distribution and concentration and at the same time to assess the enrichment of arsenic using the geoaccumulation index (Igeo) and enrichment factor (EF). This study shows the total arsenic concentration in the surface sediment of BMR is 4.302 ± 2.43 mg kg–1 and found to be below the threshold value of Canadian Interim Sediment Quality Guidelines (ISQG). High arsenic concentration is recorded near the southern part of the lake where anthropogenic activities are prevalent. Based on Igeo, 13% of sampling stations are categorised as moderately polluted, 52.2% as unpolluted to moderately polluted and the rest is categorised as unpolluted. EF shows 78.3% stations are classified as extremely high enrichment and the rest as very high enrichment. This finding provides important information on the status of arsenic contamination in BMR and creating awareness concerning the conservation and management of the reservoir in the future.


 


Satu kajian penyelidikan telah dilakukan di Takungan Bukit Merah (BMR) untuk menilai kepekatan arsenik pada permukaan mendapan di 23 stesen pensampelan. Sampel mendapan dicerna dan dianalisa menggunakan Inductively Coupled PlasmaOptical Emission Spectrometry (ICP-OES). Parameter mendapan seperti pH (4.42 ± 0.71), keupayaan redoks (121.77 ± 42.45 mV), kekonduksian (205.7 ± 64.07 µS cm–1) dan jirim organik (25.35 ± 9.34%) juga diuji. Objektif utama kajian ini adalah untuk mengenal pasti taburan dan kepekatan arsenik dan pada masa yang sama menilai pengayaan arsenik menggunakan indeks pengumpulan geo (Igeo) dan faktor pengayaan. Kajian ini menunjukkan jumlah kepekatan arsenik pada permukaan mendapan di BMR ialah 4.302 ± 2.43 mg kg–1 dan didapati di bawah nilai ambang Garis Panduan Kualiti Interim Mendapan Kanada. Kepekatan arsenik yang tinggi direkodkan berhampiran selatan tasik di mana aktiviti antropogen tersebar. Berdasarkan Igeo, 13% daripada stesen pensampelan dikategorikan sebagai sederhana tercemar, 52.2% tidak tercemar kepada sederhana tercemar dan bakinya dikategorikan sebagai tidak tercemar. Faktor pengayaan menunjukkan 78.3% stesen diklasifikasikan sebagai pengayaan yang sangat tinggi dan bakinya agak tinggi. Dapatan ini memberikan maklumat yang penting berkenaan status pencemaran arsenik di BMR dan mewujudkan kesedaran terhadap pemuliharaan dan pengurusan takungan ini di masa hadapan.

Article Details

How to Cite
Geoaccumulation Index and Enrichment Factor of Arsenic in Surface Sediment of Bukit Merah Reservoir, Malaysia. (2020). Tropical Life Sciences Research, 31(3), 109–125. https://doi.org/10.21315/tlsr2020.31.3.8
Section
Original Article

References

Adebola B A K, Joseph K S and Adebayo A O. (2018). Integrated assessment of the heavy metal pollution status and potential ecological risk in the Lagos Lagoon, South West, Nigeria. Human and Ecological Risk Assessment: An International Journal 24(2): 377–397. https://doi.org/10.1080/10807039.2017.1384694

Adel Mashaan R, Yaaroub Faleh A, Abd-Al-Husain N A O and Mustafa N. (2011). Using pollution load index (PLI) and geoaccumulation index ( I-Geo ) for the assessment of heavy metals pollution in Tigris River sediment in Baghdad region. Journal of Al-Nahrain University 14(4): 108–114. https://doi.org/10.22401/JNUS.14.4.14

Akinbile C O, Yusoff, M S, Talib S H A, Hasan Z A, Ismail, W R and Sansudin U. (2013). Qualitative analysis and classification of surface water in Bukit Merah Reservoir in Malaysia. Water Science and Technology: Water Supply 13(4): 1138–1145. https://doi.org/10.2166/ws.2013.104

Alam M G M, Allinson G, Stagnitti F, Tanaka A and Westbrooke M. (2002). Arsenic contamination in Bangladesh groundwater: A major environmental and social disaster. International Journal of Environmental Health Research 12(3): 235–253. https://doi.org/10.1080/0960312021000000998

Ali M M, Ali M L, Islam M S and Rahman M Z. (2016). Preliminary assessment of heavy metals in water and sediment of Karnaphuli River, Bangladesh. Environmental Nanotechnology, Monitoring & Management 5: 27–35. https://doi.org/10.1016/j.enmm.2016.01.002

Alves C M, Ferreira C M H and Soares H M V M. (2018). Relation between different metal pollution criteria in sediments and its contribution on assessing toxicity. Chemosphere 208: 390–398. https://doi.org/10.1016/j.chemosphere.2018.05.072

Ambak M A and Jalal K C A. (2006). Sustainability issues of reservoir fisheries in Malaysia. Aquatic Ecosystem Health and Management 9(2): 165–173. https://doi.org/10.1080/14634980600701468

Bauer M and Blodau C. (2006). Mobilization of arsenic by dissolved organic matter from iron oxides, soils and sediments. Science of the Total Environment 354(2–3): 179–190. https://doi.org/10.1016/j.scitotenv.2005.01.027

Bosch A C, O’Neill B, OSigge G, Kerwathb S E and Hoffman L C. (2016). Heavy metals in marine fish meat and consumer health: A review. Journal of the Science of Food and Agriculture 96: 32–48. https://doi.org/10.1002/jsfa.7360

Cagnin R C, Quaresma V S, Chaillou G, Franco T and Bastos A C. (2017). Arsenic enrichment in sediment on the eastern continental shelf of Brazil. Science of the Total Environment 607–608: 304–316. https://doi.org/10.1016/j.scitotenv.2017.06.162

Draszawka-Bolzan B. (2015). Heavy metals in soils. World News of Natural Sciences 2: 20–37.

Galloway J M, Swindles G T, Jamieson H E, Palmer M, Parsons M B, Sanei H, Macumber A L, et al. (2018). Organic matter control on the distribution of arsenic in lake sediments impacted by ~ 65 years of gold ore processing in subarctic Canada. Science of the Total Environment 622–623: 1668–1679. https://doi.org/10.1016/j.scitotenv.2017.10.048

Gharibreza M, Ashraf M, Yusoff I. and John K R. (2013). An evaluation of Bera Lake (Malaysia) sediment contamination using sediment quality guidelines. Journal of Chemistry 2013: 1–13. https://doi.org/10.1155/2013/387035

Ghrefat H A, Abu-Rukah Y and Rosen M A. (2011). Application of geoaccumulation index and enrichment factor for assessing metal contamination in sediments of Kafrain Dam, Jordan. Ennvironmental Monitoring Assessment 178: 95–109. https://doi.org/10.1007/s10661-010-1675-1

Ghrefat H A, Waheidi M, El Batayneh A, Nazzal Z, Zumlot T and Mogren S. (2016). Pollution assessment of arsenic and other selected elements in the groundwater and soil of the Gulf of Aqaba, Saudi Arabia. Environmental Earth Sciences 75(3): 1–10. https://doi.org/10.1007/s12665-015-5020-4

Goher M E, Farhat H I, Abdo M H and Salem S G. (2014). Metal pollution assessment in the surface sediment of Lake Nasser, Egypt. Egyptian Journal of Aquatic Research 40(3): 213–224. https://doi.org/10.1016/j.ejar.2014.09.004

Gorny J, Billon G, Lesven L, Dumoulin D, Madé B and Noiriel C. (2015). Arsenic behavior in river sediments under redox gradient: A review. Science of the Total Environment 505: 423–434. https://doi.org/10.1016/j.scitotenv.2014.10.011

Habib J, Sadigheh J and Mohammad Ali K. (2018). Assessment of heavy metal pollution and ecological risk in marine sediments (A case study: Persian Gulf). Human and Ecological Risk Assessment 24(8): 1–10. https://doi.org/10.1080/10807039.2018.1443792

Haris H and Aris A Z. (2013). The geoaccumulation index and enrichment factor of mercury in mangrove sediment of Port Klang, Selangor, Malaysia. Arabian Journal of Geosciences 6(11): 4119–4128. https://doi.org/10.1007/s12517-012-0674-7

Hassan M M, Atkins, P J, Dunn C E, Hassan M M, Atkins P J and Dunn C E. (2011). The spatial pattern of risk from arsenic poisoning: A Bangladesh case study. Journal of Environmental Science and Health, Part A 38(1): 1–24. https://doi.org/10.1081/ESE-120016590

Hatje V, Macedo S, Jesus R M D, Cotrim G, Garcia K S, Queiroz A F De and Ferreira S L C. (2010). Inorganic As speciation and bioavailability in estuarine sediments of Todos os Santos Bay, BA, Brazil. Marine Pollution Bulletin 60: 2225–2232. https://doi.org/10.1016/j.marpolbul.2010.08.014

Hidzrami S A. (2010). Bukit Merah Lake Brief. National seminar on managing lakes and their basin for sustainable use: Current status of selected lake in Malaysia. Putrajaya: Department of Irrigation and Drainage, 1–90.

Hooda P S. (2010). Trace elements in soils. West Sussex, UK: Wiley-Blackwell. https://doi.org/10.1002/9781444319477

Huang Z, Tang Y, Zhang K, Chen Y, Wang Y, Kong L, You T et al. (2016). Environmental risk assessment of manganese and its associated heavy metals in a stream impacted by manganese mining in South China. Human and Ecological Risk Assessment 22(6): 1341–1358. https://doi.org/10.1080/10807039.2016.1169915

Islam M S, Hossain M B, Matin A and Sarker M S I. (2018). Assessment of heavy metal pollution, distribution and source apportionment in the sediment from Feni River estuary, Bangladesh. Chemosphere 202: 25–32. https://doi.org/10.1016/j.chemosphere.2018.03.077

Ismail W R and Najib S A M. (2011). Sediment and nutrient balance of Bukit Merah Reservoir, Perak (Malaysia). Lake & Reservoirs: Research and Management 16: 179–184. https://doi.org/10.1111/j.1440-1770.2011.00453.x

Jahan S and Strezov V. (2018). Comparison of pollution indices for the assessment of heavy metals in the sediments of seaports of NSW, Australia. Marine Pollution Bulletin 128: 295–306. https://doi.org/10.1016/j.marpolbul.2018.01.036

Kadhum S A, Ishak M Y, Zulkifli S Z and Hashim R. (2015). Evaluation of the status and distributions of heavy metal pollution in surface sediments of the Langat River Basin in Selangor Malaysia. Marine Pollution Bulletin 101: 391–396. https://doi.org/10.1016/j.marpolbul.2015.10.012

Kapaj S, Peterson H, Liber K and Bhattacharya P. (2006). Human health effects from chronic arsenic poisoning: A review. Journal of Environmental Science and Health - Part A Toxic/Hazardous Substances and Environmental Engineering 41(10): 2399–2428. https://doi.org/10.1080/10934520600873571

Khodami S, Surif M, Wan Maznah W O and Daryanabard R. (2017). Assessment of heavy metal pollution in surface sediments of the Bayan Lepas area, Penang, Malaysia. Marine Pollution Bulletin 114: 615–622. https://doi.org/10.1016/j.marpolbul.2016.09.038

Liu Y, Mu S, Bao A, Zhang D and Pan X. (2015). Effects of salinity and (an)ions on arsenic behavior in sediment of Bosten Lake, Northwest China. Environmental Earth Sciences 73(8): 4707–4716. https://doi.org/10.1007/s12665-014-3755-y

Loska K, Wiechu?a D, Barska B, Cebula E and Chojnecka A. (2003). Assessment of arsenic enrichment of cultivated soils in Southern Poland. Polish Journal of Environmental Studies 12: 187–192.

Mudhoo A, Sharma S K and Garg V K. (2011). Arsenic: An overview of applications, health, and environmental concerns and removal processes. Critical Review in Environmental Science and Technology 41: 435–519. https://doi.org/10.1080/10643380902945771

Muller G. (1969). Index of geoaccumulation in sediments of the Rhine River. Geojournal 2: 108–118. Nowrouzi M and Pourkhabbaz A. (2014). Application of geoaccumulation index and enrichment factor for assessing metal contamination in the sediments of Hara Biosphere Reserve, Iran. Chemical Speciation and Bioavailability 26(2): 99–105. https://doi.org/10.3184/095422914X13951584546986

Qin S, Shiming D, Yan W, Lv X, Dan W, Jing C and Chaosheng Z. (2016). In-situ characterization and assessment of arsenic mobility in lake. Environmental Pollution 214: 314–323. https://doi.org/10.1016/j.envpol.2016.04.039

Radojevic M and Bashkin V N. (2006). Practical environmental analysis, 2nd ed. Cambridge: The Royal Society of Chemistry.

Rajeshkumar S, Liu Y, Zhang X, Ravikumar B, Bai G and Li X. (2018). Studies on seasonal pollution of heavy metals in water, sediment, fish and oyster from the Meiliang Bay of Taihu Lake in China. Chemosphere 191: 626–638. https://doi.org/10.1016/j.chemosphere.2017.10.078

Rasheed H, Slack R and Kay P. (2016). Human health risk assessment for arsenic: A critical review. Critical Reviews in Environmental Science and Technology 46(19– 20): 1529–1583. https://doi.org/10.1080/10643389.2016.1245551

Riaz Uddin and Naz Hasan H. (2011). Arsenic poisoning in Bangladesh. Oman Medical Journal 26(3): 207. https://doi.org/10.5001/omj.2011.51

Rieuwerts J S. (2015). The mobility and bioavailability of trace metals in tropical soils: A review. Chemical Speciation and Bioavailability 19(2): 75–85. https://doi.org/10.3184/095422907X211918

Rieuwerts J S, Thornton I, Farago M E and Ashmore M R. (1998). Factors influencing metal bioavailability in soils: Preliminary investigations for the development of a critical loads approach for metals. Chemical Speciation and Bioavailability 10(2): 61–75. https://doi.org/10.3184/095422998782775835

Roy S P. (2010). Overview of heavy metals and aquatic environment with notes on their recovery. Ecoscan: An International Quarterly Journal of Environmental Sciences 4(2&3): 235–240.

Sakan S M, ?or?evi? D S, Lazi? M M and Tadi? M M. (2012). Assessment of arsenic and mercury contamination in the Tisa River sediments and industrial canal sediments (Danube alluvial formation), Serbia. Journal of Environmental Science and Health - Part A Toxic/Hazardous Substances and Environmental Engineering 47(1): 109–116. https://doi.org/10.1080/10934529.2012.630290

Sanyal T, Kaviraj A and Saha S. (2017). Toxicity and bioaccumulation of chromium in some freshwater fish. Human and Ecological Risk Assessment 23(7): 1655–1667. https://doi.org/10.1080/10807039.2017.1336425

Shafie N A, Aris A Z, Zakaria M P, Haris H, Wan Y L and Isa N M. (2013). Application of geoaccumulation index and enrichment factors on the assessment of heavy metal pollution in the sediments. Journal of Environmental Science and Health - Part A Toxic/Hazardous Substances and Environmental Engineering 48(2): 182–190. https://doi.org/10.1080/10934529.2012.717810

Shtangeeva I. (2005). Trace and ultratrace elements in plant and soil. Southampton, UK and Boston, MA: WIT Press.

Shuhaimi-Othman M, Ahmad A K and Norziana G. (2010). Kepekatan logam di Tasik Bukit Merah, Perak. Sains Malaysiana 39(6): 883–889.

Siti Hidayah A T, Yusoff M S and Zorkeflee A H. (2012). Modeling of sedimentation pattern in Bukit Merah Reservoir, Perak, Malaysia. Procedia Engineering 50: 201–210. https://doi.org/10.1016/j.proeng.2012.10.025

Sukri N S, Aspin S A, Kamarulzaman N L, Jaafar N F, Rozidaini M G, Shafiee N S, Siti Hajar Y, et al. (2018). Assessment of metal pollution using enrichment factor (EF) and pollution load index (PLI) in sediments of selected terengganu, Malaysia. Malaysian Journal of Fundamental and Applied Sciences 14(2): 235–240. https://doi.org/10.11113/mjfas.v14n2.1065

Tornero V and Hanke G. (2016). Chemical contaminants entering the marine environment from sea-based sources: A review with a focus on European seas. Marine Pollution Bulletin 112: 17–38. https://doi.org/10.1016/j.marpolbul.2016.06.091

Varol M. (2011). Assessment of heavy metal contamination in sediments of the Tigris River (Turkey) using pollution indices and multivariate statistical techniques. Journal of Hazardous Materials 195: 355–364. https://doi.org/10.1016/j.jhazmat.2011.08.051

Wang H, Liu R, Wang Q, Xu F, Men C and Shen Z. (2016). Bioavailability and risk assessment of arsenic in surface sediments of the Yangtze River estuary. Marine Pollution Bulletin 113(1–2): 125–131. https://doi.org/10.1016/j.marpolbul.2016.08.076

Wang S and Mulligan C N. (2006). Effect of natural organic matter on arsenic mobilization from mine tailings. Environmental Geochemistry and Health 28: 197–214. https://doi.org/10.1016/j.jhazmat.2009.02.088

Yang H, Lee C, Chiang Y, Jean J, Shau Y, Takazawa E and Jiang W. (2016). Distribution and hosts of arsenic in a sediment core from the Chianan Plain in SW Taiwan: Implications on arsenic primary source and release mechanisms. Science of the Total Environment 569–570: 212–222. https://doi.org/10.1016/j.scitotenv.2016.06.122

Zahra A, Hashmi M Z, Malik R N and Ahmed Z. (2014). Enrichment and geo-accumulation of heavy metals and risk assessment of sediments of the Kurang Nallah-Feeding tributary of the Rawal Lake Reservoir, Pakistan. Science of the Total Environment 470–471: 925–933. https://doi.org/10.1016/j.scitotenv.2013.10.017