Plant Growth Promoting Potentials of Beneficial Endophytic Escherichia coli USML2 in Association with Rice Seedlings

Main Article Content

Munirah Tharek
Dzulaikha Khairuddin
Nazalan Najimudin
Amir Hamzah Ghazali

Abstract

An endophytic Escherichia coli USML2 originally isolated from the inner part of an oil palm (Elaeis guineensis Jacq.) leaf tissue was inoculated to rice seedlings to investigate its ability in colonizing plant inner tissues and promoting growth. Infection of E. coli USML2 was initiated by colonization on the root surface, invasion of the interior root system followed by endophytic spreading. Inoculation of E. coli USML2 in the rice rhizosphere zone resulted in a significant increase in leaf numbers (33.3%), chlorophyll content (33.3%), shoot height (34.8%) and plant dry weight (90.4%) of 42 days old rice seedlings as compared to the control. These findings also demonstrated the ability of E. coli USML2 to spread endophytically which serves as a beneficial strategy for the bacterium to colonize the host plant and gain protection against adverse soil conditions. The genome of E. coli USML2 had also revealed predicted genes essential for endophytic bacterial colonization and plant growth promotion which further proven potentials of E. coli USML2 as Plant Growth Promoting Endophyte (PGPE).

Article Details

How to Cite
Plant Growth Promoting Potentials of Beneficial Endophytic Escherichia coli USML2 in Association with Rice Seedlings. (2021). Tropical Life Sciences Research, 32(1), 119–143. https://doi.org/10.21315/tlsr2021.32.1.8
Section
Original Article

References

Ahemad M and Kibret M. (2014). Mechanisms and applications of plant growth promoting rhizobacteria: Current perspective. Journal of King Saud University-Science 26: 1–20. https://doi.org/10.1016/j.jksus.2013.05.001

Altschul S F, Gish W, Miller W, Myers E W and Lipman D J. (1990). Basic alignment search tools. Journal of Molecular Biology 215: 403–410. https://doi.org/10.1016/S0022-2836(05)80360-2

Amir H G, Shamsuddin Z H, Halimi M S, Ramlan M F and Marziah M. (2001). Effects of Azospirillum inoculation on N2 fixation and growth of oil palm plantlets at nursery stage. Journal of Oil Palm Research 13(1): 42–49.

Annous B A, Fratamico P M and Smith J L. (2009) Quorum sensing in biofilms: Why bacteria behave the way they do. Journal of Food Science 74: 1–14.

Ashrafuzzaman M, Hossen F A, Razi I M, Hoque M A, Zahurul I M, Shahidullah S M and Meon S. (2009). Efficiency of plant growth-promoting rhizobacteria (PGPR) for the enhancement of rice growth. African Journal of Biotechnology 8: 1247–1252.

Aziz R K, Bartels D, Best A A, DeJongh M, Disz T, Edwards R A, Formsma K, Gerdes S, Glass E M, Kubal M et al. (2008) The RAST server: Rapid annotations using subsystems technology. BMC Genomics 9: 1–15. https://doi.org/10.1186/1471-2164-9-75

Berg G, Zachow C, Müller H, Phillips J and Tilcher R. (2013). Next-generation bio-products sowing the seeds of success for sustainable agriculture. Agronomy 3: 648–656. https://doi.org/10.3390/agronomy3040648

Blomfield I C, Vaughn V, Rest R F and Eisenstein B I. (1991). Allelic exchange in Escherichia coli using the Bacillus subtilis sacB gene and a temperature-sensitive pSC101 replicon. Molecular Microbiology 5(6): 1447–1457. https://doi.org/10.1111/j.1365-2958.1991.tb00791.x

Blount Z D. (2015). The unexhausted potential of E. coli. eLife. 4: e05826. https://doi .org/10.7554/eLife.05826 Bowen G D and Rovira A D. (1999). The rhizosphere and its management to improve plant growth. Advances in Agronomy 66: 1–102. https://doi.org/10.1016/S0065-2113(08)60425-3

Brambilla E. (2014). Investigation of E. coli genome complexity by means of fluorescent reporters of gene expression. Unpublished doctoral dissertation, Universit´e Pierre et Marie Curie, Paris VI.

Compant S, Reiter B, Sessitsch A, Nowak J, Clément C and Ait Barka E. (2005). Endophytic colonization of Vitis vinifera L. by plant growth-promoting bacterium Burkholderia sp. strain PsJN. Applied and Environmental Microbiology 71: 1685–1693. https://doi.org/10.1128/AEM.71.4.1685-1693.2005

Dublan M, Ortiz-Marquez J C, Lett L and Curatti L. (2014). Plant-adapted Escherichia coli show increased lettuce colonizing ability, resistance to oxidative stress and chemotactic response. PloS One 9(10): e110416. https://doi.org/10.1371/journal.pone.0110416

Dudeja S S and Giri R. (2014). Beneficial properties, colonization, establishment, and molecular diversity of endophytic bacteria. African Journal of Microbiology Research 8: 1562–1572. https://doi.org/10.5897/AJMR2013.6541

Edwards R M and Yudkin M D. (1984). Tryptophanase synthesis in Escherichia coli: The role of indole replacement in supplying tryptophan and the nature of the constitutive mutation tnaR3. Journal of General Microbiology 130: 1535–1542. https://doi.org/10.1099/00221287-130-6-1535

Fan B, Chen X H, Budiharjo A, Bleiss W, Vater J and Borris R. (2011). Efficient colonization of plant roots by the plant growth promoting bacterium Bacillus amyloliquefaciens FZB42, engineered to express green fluorescent protein. Journal of Biotechnology 151: 303–311. https://doi.org/10.1016/j.jbiotec.2010.12.022

Fan F and Macnab R M. (1996). Enzymatic characterization of fliI: An ATPase involved in flagellar assembly in Salmonella typhimurium. Journal of Biological Chemistry 271(50): 31981–31988. https://doi.org/10.1074/jbc.271.50.31981

Gaimster H and Summers D. (2015). Regulation of indole signalling during the transition of E. coli from exponential to stationary phase. PLoS One 10(9): e0136691. https://doi.org/10.1371/journal.pone.0136691

Glick B R. (1995). The enhancement of plant growth by free-living bacteria. Canadian Journal of Microbiology 41: 109–117. https://doi.org/10.1139/m95-015

Gururani M A, Upadhyaya C P, Baskar V, Venkatesh J, Nookaraju A and Andark S W. (2012). Plant growth-promoting rhizobacteria enhance abiotic stress tolerance in Solanum tuberosum through inducing changes in the expression of ROSscavenging enzymes an improved photosynthetic performance. Journal of Plant Growth Regulation 32(2): 245–258. https://doi.org/10.1007/s00344-012-9292-6

Gyaneshwar P, James E K, Mathan N, Reddy P M, Reinhold-Hurek B and Ladha J K. (2001). Endophytic colonization of rice by a diazotrophic strain of Serratia marcescens. Journal of Bacteriology 183: 2634–2645. https://doi.org/10.1128/JB.183.8.2634-2645.2001

Hardoim P R, van Overbeek L S and Elsas J D. (2008). Properties of bacterial endophytes and their proposed role in plant growth. Trends in Microbiology 16(10): 463–471. https://doi.org/10.1016/j.tim.2008.07.008

Hasan K, Najimudin N and Samian M R. (2004). Regulation studies of phaC (C1 and C2) genes in Pseudomonas sp. USM 4-55. The 4th Annual Seminar of National Science Fellowship 2004. Bio28.

Hockett K L, Burch A Y and Lindow S E. (2013) Thermo-regulation of genes mediating motility and plant interactions in Pseudomonas syringae. PLoS One 8(3): e59850. https://doi.org/10.1371/journal.pone.0059850

Ikeda S, Okubo T, Anda M, Nakashita H, Yasuda M, Sato S, Kaneko T, Tabata S, Eda S, Momiyama A, et al. (2010). Community-and genome-based views of plantassociated bacteria: Plant-bacterial interactions in soybean and rice. Plant Cell Physiology 51: 1398–1410. https://doi.org/10.1093/pcp/pcq119

Ingerson-Mahar M and Reid A. (2011). FAQ: E. coli: Good, bad & deadly. Washington DC: American Academy of Microbiology.

Kanehisa M, Sato Y, Kawashima M, Furumichi M and Tanabe M. (2016). KEGG as a reference resource for gene and protein annotation. Nucleic Acids Research 44: 457–462. https://doi.org/10.1093/nar/gkv1070

Kloepper J W, Lifshitz R and Zablotowicz R M. (1989) Free-living bacterial inocula for enhancing crop productivity. Trends in Biotechnology 7: 39–43. https://doi.org/10.1016/0167-7799(89)90057-7

Lee Y Y, Barker C S, Matsumura P and Belas R. (2011). Refining the binding of the Escherichia coli flagellar master regulator, FlhD4C2, on a base-specific level. Journal of Bacteriology 193(16): 4057–4068. https://doi.org/10.1128/JB.00442-11

León R R and Espin G. (2008). flhDC, but not fleQ, regulates flagella biogenesis in Azotobacter vinelandii, and is under AlgU and CydR negative control. Microbiology 154(Pt 6): 1719–1728. https://doi.org/10.1099/mic.0.2008/017665-0

Lim S L, Subramaniam S, Zamzuri I and Amir H G. (2016). Biotization of in vitro calli and embryogenic calli of oil palm (Elaeis guineensis Jacq.) with diazotrophic bacteria Herbaspirillum seropedicae (Z78). Plant Cell Tissue and Organ Culture 127: 251–262. https://doi.org/10.1007/s11240-016-1048-8

Liu S T, Lee L Y, Tai C Y, Hung C H, Chang Y S, Wolfram J H, Rogers R and Goldstein A H. (1992). Cloning of an Erwinia herbicola gene necessary for gluconic acid production and enhanced mineral phosphate solubilization in Escherichia coli HB101. Journal of Bacteriology 174: 5814–5819. https://doi.org/10.1128/JB.174.18.5814-5819.1992

Méric G, Kemsley E K, Falush D, Saggers E J and Lucchini S. (2013). Phylogenetic distribution of traits associated with plant colonization in Escherichia coli. Environmental Microbiology 15: 487–501. https://doi.org/10.1111/j.1462-2920.2012.02852.x

Muthukumarasamy R, Govindarajan M, Vadivelu M, Revathi G. (2006) N-fertilizer saving by the inoculation of Gluconacetobacter diazotrophicus and Herbaspirillum sp. in micropropagated sugarcane plants. Microbiological Research 161: 238–245. https://doi.org/10.1016/j.micres.2005.08.007

Narula N, Kothe E and Behl R K. (2009) Role of root exudates in plant-microbe interactions. Journal of Applied Botany and Food Quality 82: 122–130.

Nautiyal C S, Chauhan P S and Rehman A. (2010). Environmental Escherichia coli occur as natural plant growth-promoting soil bacterium. Archives of Microbiology 192: 185–193. https://doi.org/10.1007/s00203-010-0544-1

Neufeld H S, Chappelka A H, Somers G L, Burkey K O, Davison A W and Finkelstein P L. (2006). Visible foliar injury caused by ozone alters the relationship between SPAD meter readings and chlorophyll concentrations in cutleaf coneflower. Photosynthesis Research 87: 281–286. https://doi.org/10.1007/s11120-005-9008-x

Okon Y and Labandera-Gonzalez C A. (1994). Agronomic applications of Azospirillm: An evaluation of 20 years worldwide field inoculation. Soil Biology and Biochemistry 26: 1591–1601. https://doi.org/10.1016/0038-0717(94)90311-5

Overbeek R, Olson R, Pusch G D, Olsen G J, Davis J J, Disz T, Edwards R A, Gerdes S, Parrello B, Shukla M, et al. (2014). The SEED and the rapid annotation of genomes using subsystems technology (RAST). Nucleic Acids Research 42: D206–D214. https://doi.org/10.1093/nar/gkt1226

Panichkin V B, Livshits V A, Biryukova I V and Mashko S V. (2016). Metabolic engineering of Escherichia coli for L-tryptophan production. Applied Biochemistry and Microbiology 52(9): 783–809. https://doi.org/10.1134/S0003683816090052

Pedraza R O, Bellone C H, de Bellone S, Sorte P M B and Teixeira K R D. (2009). Azospirillum inoculation and nitrogen fertilization effect on grain yield and on the diversity of endophytic bacteria in the phyllosphere of rice rainfed crop. European Journal of Soil Biology 45: 36–43. https://doi.org/10.1016/j.ejsobi.2008.09.007

Stefan M, Mihasan M and Duncan S. (2008). Plant growth promoting Rhizobacteria can inhibit the in vitro germination of Glycine Max L. seeds. Annals of the ‘’Alexandru Ioan Cuza’’ University Sect.II a. Genetics and Molecular Biology 3: 105–110.

Taghavi S, van der Lelie D, Hoffman A, Zhang Y B, Walla M D and Vangronsveld J. (2010). Genome sequence of the plant growth promoting endophytic bacterium Enterobacter sp. PLoS Genetics 6: e1000943. https://doi.org/10.1371/journal.pgen.1000943

Tambalo D D, Yost C K and Hynes M F. (2015) Motility and chemotaxis in the rhizobia. In: de Bruijn F J (ed.), Biological nitrogen fixation. Hoboken, NJ: John Wiley & Sons, Inc. https://doi.org/10.1002/9781119053095.ch33

Tarrand J J, Krieg N R and Döbereiner J. (1978). A taxonomic study of the Spirillum lipoferum group, with descriptions of a new genus, Azospirillum gen. nov. and two species, Azospirillum lipoferum (Beijerinck) comb. nov. and Azospirillum brasilense sp. nov. Canadian Journal of Microbiology 24(8): 967–980. https://doi.org/10.1139/m78-160

Tharek M, Dzulaikha K, Salwani S, Amir H G and Najimudin N. (2011). Ascending endophytic migration of locally isolated diazotroph, Enterobacter sp. strain USML2 in rice. Biotechnology 10(6): 521–527. https://doi.org/10.3923/biotech.2011.521.527

Tharek M, Kee-Shin S, Dzulaikha K, Amir H G and Najimudin N. (2017). Whole genome sequence of endophytic plant growth promoting Escherichia coli USML2. Genome Announcements 5(19): 1–2. https://doi.org/10.1128/genomeA.00305-17

Turnbull G A, Morgan J A, Whipps J M and Saunders J R. (2001) The role of bacterial motility in the survival and spread of Pseudomonas fluorescens in soil and in the attachment and colonisation of wheat roots. FEMS Microbiol Ecology 36(1): 21–31. https://doi.org/10.1111/j.1574-6941.2001.tb00822.x

Yao W, LiSha D, YangBao H, Yong Z, BaoYu Y and ShiYun C. (2007). The flhDC gene affects motility and biofilm formation in Yersinia pseudotuberculosis. Science in China Series C: Life Sciences 50(6): 814–821. https://doi.org/10.1007/s11427-007-0101-6

Yoshida S, Forno D A, Cook J H and Gomes K A. (1976). Laboratory manual for physiological studies of rice (3rd Ed.). Los Banos, Laguna, Philippines: The International Rice Research Institute.

Yunlei H, Rui W, Zhirong Y, Yuhua Z, Yao M, Shuzhen P, Liwen Z, Min L and Yongliang Y. (2015). 1-aminocyclopropane-1-carboxylate deaminase from Pseudomonas stutzeri A1501 facilitates the growth of rice in the presence of salt or heavy metals. Journal of Microbiology and Biotechnology 25(7): 1119–1128. https://doi.org/10.4014/jmb.1412.12053