Evaluation of Cellulolytic Endo-1,4-B-D-Glucanase Activity in the Digestive Fluid of Adult Phytophagous Beetle Hoplasoma unicolor
Main Article Content
Abstract
Insects of the taxonomic order Coleoptera are recognised for considerable cellulolytic activity in their digestive fluid. The cellulolytic activity of the gut fluid in Hoplasoma unicolor, a member of Coleoptera, however, remains unexplored. In this study, we, for the first time, report the qualitative and quantitative analysis of cellulolytic activity in the digestive fluid of this insect. The cellulolytic endo-1,4-?-D-glucanase activity was confirmed in the supernatant of the insect’s digestive fluid by agar plate assay using carboxymethyl cellulose as the substrate. To determine the optimum pH, enzyme activity was further assessed in an acidic pH range of 5 to 6, and the highest activity was observed at pH 5.3. For quantitative analysis, endoglucanase activity was measured using 3,5-dinitrosalicylic acid method which revealed that the specific activity of the gut sample was 0.69 (±0.01) units per mg of protein. For further characterisation of the cellulases in the sample, SDS-PAGE and zymogram analysis were carried out. Two active cellulolytic bands were detected on the zymogram suggesting the presence of two distinct endoglucanases which completely disappeared upon heating the sample at 55°C. Our study, therefore, highlights prospect of the gut fluid of H. unicolor as an important source of cellulase enzymes that merits further investigations into their extensive characterisation for potential industrial applications.
Article Details
This work is licensed under a Creative Commons Attribution 4.0 International License.
References
Ali S, Hall J, Soole K L, Fontes C M G A, Hazlewood G P, Hirst B H and Gilbert H J. (1995). Targeted expression of microbial cellulases in transgenic animals. In S B Petersen, B Svensson and S Pedersen (eds.). Progress in biotechnology. Amsterdam: Elsevier, 279–293. https://doi.org/10.1016/S0921-0423(06)80111-5
Annamalai N, Rajeswari M V and Balasubramanian T. (2016). Endo-1,4-?-glucanases: Role, Applications and Recent Developments. In V K Gupta (ed.). Microbial enzymes in bioconversions of biomass. Cham: Springer International Publishing, 37–45. https://doi.org/10.1007/978-3-319-43679-1_3
Bayer E A, Chanzy H, Lamed R and Shoham Y. (1998). Cellulose, cellulases and cellulosomes. Current Opinion in Structural Biology 8(5): 548–557. https://doi.org/10.1016/S0959-440X(98)80143-7
Bayer E A, Lamed R and Himmel M E. (2007). The potential of cellulases and cellulosomes for cellulosic waste management. Current Opinion in Biotechnology 18(3): 237–245. https://doi.org/10.1016/j.copbio.2007.04.004
Busch A, Kunert G, Wielsch N and Pauchet Y. (2018). Cellulose degradation in Gastrophysa viridula (Coleoptera: Chrysomelidae): Functional characterization of two CAZymes belonging to glycoside hydrolase family 45 reveals a novel enzymatic activity. Insect Molecular Biology 27(5): 633–650. https://doi.org/10.1111/imb.12500
Colepicolo-Neto P, Bechara E J H, Ferreira C and Terra W R. (1986). Evolutionary considerations of the spatial organization of digestion in the luminescent predaceous larvae of Pyrearinus termitilluminans (Coleoptera: Elateridae). Insect Biochemistry 16(5): 811–817. https://doi.org/10.1016/0020-1790(86)90118-6
Dashtban M, Maki M, Leung K T, Mao C and Qin W. (2010). Cellulase activities in biomass conversion: Measurement methods and comparison. Critical Reviews in Biotechnology 30(4): 302–309. https://doi.org/10.3109/07388551.2010.490938
Dojnov B, Pavlovi? R, Boži? N, Margeti? A, Nenadovi? V, Ivanovi? J and Vuj?i? Z. (2013). Expression and distribution of cellulase, amylase and peptidase isoforms along the midgut of Morimus funereus L. (Coleoptera: Cerambycidae) larvae is dependent on nutrient substrate composition. Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology 164(4): 259–267. https://doi.org/10.1016/j.cbpb.2013.02.001
Geib S M, Tien M and Hoover K. (2010). Identification of proteins involved in lignocellulose degradation using in gel zymogram analysis combined with mass spectroscopybased peptide analysis of gut proteins from larval Asian longhorned beetles, Anoplophora glabripennis. Insect Science 17(3): 253–264. https://doi.org/10.1111/j.1744-7917.2010.01323.x
Girfoglio M, Rossi M and Cannio R. (2012). Cellulose degradation by Sulfolobus solfataricus requires a cell-anchored endo-?-1-4-glucanase. Journal of Bacteriology 194(18): 5091–5100. https://doi.org/10.1128/JB.00672-12
Hatefi A, Makhdoumi A, Asoodeh A and Mirshamsi O. (2017). Characterization of a bifunctional cellulase produced by a gut bacterial resident of Rosaceae branch borer beetle, Osphranteria coerulescens (Coleoptera: Cerambycidae). International Journal of Biological Macromolecules 103: 158–164. https://doi.org/10.1016/j.ijbiomac.2017.05.042
Hazmi I R, Sulaiman A, Azhari M L H and Samsudin S F. (2019). A checklist of beetles in Pulau Pangkor, Perak, Malaysia. The Malaysian Forester 82(1): 237–246.
Hobdey S E, Donohoe BS, Brunecky R, Himmel M E and Bomble Y J. (2015). Chapter 7: New insights into microbial strategies for biomass conversion. In M E Himmel (ed.). Direct microbial conversion of biomass to advanced biofuels. Amsterdam: Elsevier, 111–127. https://doi.org/10.1016/B978-0-444-59592-8.00007-5
Hossain T J, Chowdhury S I, Mozumder H A, Chowdhury M N A, Ali F, Rahman N and Dey S. (2020). Hydrolytic exoenzymes produced by bacteria isolated and identified from the gastrointestinal tract of bombay duck. Frontiers in Microbiology 11: 2097. https://doi.org/10.3389/fmicb.2020.02097
Jayasekara S and Ratnayake R. (2019). Microbial cellulases: An overview and applications. In A R Pascual and M E E Martin (eds.). Cellulose. IntechOpen [Online]. https://doi.org/10.5772/intechopen.84531
Laemmli U K. (1970). Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227(5259): 680–685. https://doi.org/10.1038/227680a0
Li X, Yan X, Luo Y, Tian G and Sun H. (2008). Cellulase in Anoplophora glabripennis adults emerging from different host tree species. Forestry Studies in China 10(1): 27–31. https://doi.org/10.1007/s11632-008-0004-z
Lowry O H, Rosebrough N J, Farr A L and Randall R J. (1951). Protein measurement with the Folin phenol reagent. The Journal of Biological Chemistry 193(1): 265–275. https://doi.org/10.1016/S0021-9258(19)52451-6
Mathew G, Shamsudeen R and Chandran R. (2005). Fauna of protected areas - 23: Insect fauna of Peechi-Vazhani Wildlife Sanctuary, Kerala, India. Zoo’s Print Journal 20(8): 1955–1960. https://doi.org/10.11609/JOTT.ZPJ.1280.1955-60
Miller G L. (1959). Use of dinitrosalicylic acid reagent for determination of reducing sugar. Analytical Chemistry 31(3): 426–428. https://doi.org/10.1021/ac60147a030
Minoo S S, Vahid H N and Mohammad V. (2012). Cellulase activity in the larval digestive tract of the Colorado potato beetle, Leptinotarsa decemlineata (Coleoptera: Chrysomelidae) and the cigarette beetle, Lasioderma serricorne(Coleoptera: Anobiidae). Journal of Crop Protection 1(3): 201–210.
Okano H, Ozaki M, Kanaya E, Kim J-J, Angkawidjaja C, Koga Y and Kanaya S. (2014). Structure and stability of metagenome-derived glycoside hydrolase family 12 cellulase (LC-CelA) a homolog of Cel12A from Rhodothermus marinus. FEBS Open Bio 4: 936–946. https://doi.org/10.1016/j.fob.2014.10.013
Oppert C, Klingeman W E, Willis J D, Oppert B and Jurat-Fuentes J L. (2010). Prospecting for cellulolytic activity in insect digestive fluids. Comparative Biochemistry and Physiology. Part B, Biochemistry & Molecular Biology 155(2): 145–154. https://doi.org/10.1016/j.cbpb.2009.10.014
Phitsuwan P, Laohakunjit N, Kerdchoechuen O, Kyu K L and Ratanakhanokchai K. (2013). Present and potential applications of cellulases in agriculture, biotechnology, and bioenergy. Folia Microbiologica 58(2): 163–176. https://doi.org/10.1007/s12223 -012-0184-8
Rehman F U, Aslam M, Tariq M I, Shaheen A, Sami A J, Naveed N H and Batool A I. (2009). Isolation of cellulolytic activities from Tribolium castaneum (red flour beetle). African Journal of Biotechnology 8(23): 6710–6715. https://doi.org/10.4314/ajb.v8i23.66387
Sami A J and Shakoori A. (2008). Biochemical characterization of endo-1, 4-?-D-glucanase activity of a green insect pest Aulacophora foveicollis (Lucas). Life Science Journal 5(2): 30–36.
Schwarz W H, Bronnenmeier K, Gräbnitz F and Staudenbauer W L. (1987). Activity staining of cellulases in polyacrylamide gels containing mixed linkage betaglucans. Analytical Biochemistry 164(1): 72–77. https://doi.org/10.1016/0003-2697(87)90369-1
Shelomi M, Wipfler B, Zhou X and Pauchet Y. (2020). Multifunctional cellulase enzymes are ancestral in Polyneoptera. Insect Molecular Biology 29(1): 124–135. https://doi.org/10.1111/imb.12614
Shi W, Ding S-Y and Yuan J S. (2011). Comparison of insect gut cellulase and xylanase activity across different insect species with distinct food sources. BioEnergy Research 4(1): 1–10. https://doi.org/10.1007/s12155-010-9096-0
Su L-J, Zhang H-F, Yin X-M, Chen M, Wang F-Q, Xie H, Zhang G-Z and Song A-D. (2013). Evaluation of cellulolytic activity in insect digestive fluids. Genetics and Molecular Research 12(3): 2432–2441. https://doi.org/10.4238/2013.January.4.11
Szentner K, Wa?kiewicz A, Ka?mierczak S, Wojciechowicz T, Goli?ski P, Lewandowska E and Wasielewski O. (2019). Enzymatic hydrolysis of cellulose using extracts from insects. Carbohydrate Research 485: 107811. https://doi.org/10.1016/j.carres.2019.107811
Tokuda G, Watanabe H, Matsumoto T and Noda H. (1997). Cellulose digestion in the wood-eating higher termite, Nasutitermes takasagoensis (Shiraki): Distribution of cellulases and properties of endo-?-1,4-gIucanase. Zoological Science 14(1): 83–93. https://doi.org/10.2108/zsj.14.83
Uddin M M, Chowdhury M M H, Mojumder S and Dwaipayan S. (2012). Multiple endobeta-1,4-glucanases present in the gut fluid of a defoliating beetle, Podontia quatuordecimpunctata (Coleoptera: Chrysomelidae). Pakistan Journal of Biological Sciences 15(7): 333–340. https://doi.org/10.3923/pjbs.2012.333.340
Vatanparast M, Hosseininaveh V, Ghadamyari M and Sajjadian S M. (2012). Pectinase and cellulase activity in the digestive system of the elm leaf beetle, Xanthogaleruca luteola Muller (Coleoptera: Chrysomelidae). Journal of Asia-Pacific Entomology 15(4): 555–561. https://doi.org/10.1016/j.aspen.2012.05.017
Vatanparast M, Hosseininaveh V, Ghadamyari M and Sajjadian S M. (2014). Plant cell wall degrading enzymes, pectinase and cellulase, in the digestive system of the red palm weevil, Rhynchophorus ferrugineus (Coleoptera: Curculionidae). Plant Protection Science 50(4): 190–198. https://doi.org/10.17221/43/2013-PPS
Watanabe H, Nakamura M, Tokuda G, Yamaoka I, Scrivener A M and Noda H. (1997). Site of secretion and properties of endogenous endo-?-1,4-glucanase components from Reticulitermes speratus (Kolbe), a Japanese subterranean termite. Insect Biochemistry and Molecular Biology 27(4): 305–313. https://doi.org/10.1016/S0965-1748(97)00003-9
Watanabe H, Noda H, Tokuda G and Lo N. (1998). A cellulase gene of termite origin. Nature 394(6691): 330–331. https://doi.org/10.1038/28527
Willis J D, Klingeman W E, Oppert C, Oppert B and Jurat-Fuentes J L. (2010). Characterization of cellulolytic activity from digestive fluids of Dissosteira carolina (Orthoptera: Acrididae). Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology 157(3): 267–272. https://doi.org/10.1016/j.cbpb.2010.06.012
Willis J D, Oppert B, Oppert C, Klingeman W E and Jurat-Fuentes J L. (2011). Identification, cloning, and expression of a GHF9 cellulase from Tribolium castaneum (Coleoptera: Tenebrionidae). Journal of Insect Physiology 57(2): 300–306. https://doi.org/10.1016/j.jinsphys.2010.11.019
Zhang D, Lax A R, Bland J M and Allen A B. (2011). Characterization of a new endogenous endo-?-1,4-glucanase of Formosan subterranean termite (Coptotermes formosanus). Insect Biochemistry and Molecular Biology 41(4): 211–218. https://doi.org/10.1016/j.ibmb.2010.12.006