Virulence Pattern of Pyricularia oryzae Pathotypes Towards Blast Monogenic Lines

Main Article Content

Siti Norsuha Misman
Mohd Shahril Firdaus Ab Razak
Nur Syahirah Ahmad Sobri
3 Latiffah Zakaria

Abstract


Rice blast caused by Pyricularia oryzae (P. oryzae) is one of the most serious diseases infecting rice worldwide. In the present study, virulence pattern of six P. oryzae pathotypes (P0.0, P0.2, P1.0, P3.0, P7.0 and P9.0) identified from the blast pathogen collected in Peninsular Malaysia, were evaluated using a set of 22 IRRI-bred blast resistance lines (IRBL) as well as to determine the resistance genes involved. The information on the virulence of the blast pathotypes and the resistance genes involved is important for breeding of new rice variety for durable resistance against blast disease. The IRBL was established from 22 monogenic lines, harbouring 22 resistance genes [Pia, Pib, Pii, Pit, Pi3, Pi5(t), Pish, Pi1, Pik, Pik-s, Pik-m, Pik-h, Pik-p, Pi7(t), Pi9, Piz, Piz-5, Piz-t, Pi19, Pi20(t), Pita-2, and Pita=Pi4(t)]. Based on the disease severity patterns, the tested pathotypes were avirulence towards seven IRBLs [IRBLi-F5, IRBLk-Ka, IRBLkh-K3, IRBLz-Fu, IRBLsh-S, IRBLPi7 (t) and IRBL9-W] of which these IRBLs harbouring Pii, Pik, Pik-h, Piz, Pish, Pi7(t) and Pi9 resistance genes, respectively. Therefore, the results suggested that the seven IRBLs carrying seven resistance genes [Pii, Pik, Pik-h, Piz, Pish, Pi7(t) and Pi9] would be suitable candidates of resistance genes to be incorporated in new breeding lines to combat the current blast pathotypes in the field.


 


Karah padi yang disebabkan oleh Pyricularia oryzae merupakan salah satu penyakit paling signifikan yang memberi kesan terhadap tanaman padi di seluruh dunia. Dalam kajian ini, corak kevirulenan enam patotip, P0.0, P0.2, P1.0, P3.0, P7.0 dan P9.0 yang dikenal pasti dari pencilan P. oryzae yang dikumpul dari Semenanjung Malaysia, dinilai menggunakan satu set 22 galur rintangan biakan karah-IRRI (IRBL) serta untuk menganggar gen rintangan yang terlibat. Maklumat mengenai kevirulenan patotaip karah dan gen rintangan terlibat adalah penting untuk pembiakbakaan varieti padi baru untuk kerintangan terhadap penyakit karah. IRBL dibangunkan dari 22 galur monogen, mengandungi 22 gen rintangan [Pia, Pib, Pii, Pit, Pi3, Pi5(t), Pish, Pi1, Pik, Pik-s, Pik-m, Pik-h, Pik-p, Pi7(t), Pi9, Piz, Piz-5, Piz-t, Pi19, Pi20(t), Pita-2, and Pita=Pi4(t)]. Berdasarkan corak tindakbalas penyakit, patotip yang diuji adalah avirulens terhadap tujuh IRBL [IRBLi-F5, IRBLk-Ka, IRBLkh-K3, IRBLz-Fu, IRBLsh-S, IRBLPi7(t) dan IRBL9-W] yang mengandungi gen rintangan Pii, Pik, Pik-h, Piz, Pish, Pi7(t) dan Pi9, masing-masing. Oleh itu, hasil kajian mencadangkan tujuh IRBL yang membawa tujuh gen rintangan [Pii, Pik, Pik-h, Piz, Pish, Pi7(t) dan Pi9] boleh menjadi calon gen rintangan yang sesuai untuk digabungkan ke dalam galur pembiakbakaan baharu untuk memerangi patotip karah di lapangan.


Article Details

How to Cite
Virulence Pattern of Pyricularia oryzae Pathotypes Towards Blast Monogenic Lines. (2021). Tropical Life Sciences Research, 32(3), 147–160. https://doi.org/10.21315/tlsr2021.32.3.8
Section
Original Article

References

Duan Y, Zhu Y and Liu E. (1990). Genetic studies on the resistance of rice to the blast. In L Zhu (Ed.). Advances in research on resistance to disease in major crops. Nanjing, China: Jiangsu Science-Technology Publishing House, 116–123.

Ellingboe A H and Chao C T. (1994) Genetic interaction in Magnaporthe grisae that affect cultivar specific avirulence/virulence on rice. In R S Zeigler, S A Leong S A and P S Teng (eds.). Rice blast disease. Philippines: International Rice Research Institute, 51–63.

Flor H H. (1971). Current status of the gene-for-gene concept. Annual Review of Phytopathology 9: 275–296. https://doi.org/10.1146/annurev.py.09.090171.001423

Fukuta Y, Koga I, Ung T, Sathya K, Kawasaki-Tanaka A, Koide Y, Kobayashi N, Obara M, Yagana H and Hayashi N. (2014). Pathogenicity of rice blast (Pyricularia oryzae Cavara) isolates from Cambodia. Japan Agricultural Research Quarterly 48: 155–166. https://doi.org/10.6090/jarq.48.155

Goto K and Yamanaka S. (1968). Studies on the race of rice blast fungus. Bulletin of the College of Agriculture, Utsunomiya University 7(2): 21–71.

Hayashi N, Kobayashi N, Vera Cruz C M and Fukuta Y. (2009). Protocols for the sampling of diseased specimens and evaluation of blast disease in rice. JIRCAS Working Report No. 63, 17–33.

Huang J, Si W, Deng Q, Li P and Yang S. (2014). Rapid evolution of avirulence genes in rice blast fungus Magnaporthe oryzae. BMC Genetics 15: 45. https://doi.org/10.1186/1471-2156-15-45

Jones J D and Dangl J L. (2006). The plant immune system. Nature 444: 323–329. https://doi.org/10.1038/nature05286

Kawasaki-Tanaka A and Fukuta Y. (2014). Genetic variation in resistance to blast disease (Pyricularia oryzae Cavara) in Japanese rice (Oryza sativa L.) as determined using a differential system. Breeding Science 64: 183–192. https://doi.org/10.1270/jsbbs.64.183

Khan M A I, Sen P P, Bhuiyan R, Kabir E, Chowdhury A K, Fukuta Y, Ali A and Latif M A. (2014). Phenotypic screening and molecular analysis of blast resistance in fragrant rice for marker assisted selection. Comptes Rendus Biologies 337: 318–324. https://doi.org/10.1016/j.crvi.2014.02.007

Kobayashi N, Yanoria M J T, Tsunematsu H, Kato H, Imbe T and Fukuta Y. (2007). Development of new sets of international standard differentials varieties for blast resistance in rice (Oryza sativa L.). Japanese Agricultural Research Quarterly 41: 31–37. https://doi.org/10.6090/jarq.41.31

Koide Y, Ebron L A, Kato H, Tsunematsu H, Yanoria M J T, Kobayashi N, Yokoo M, Maruyama S, Imbe T and Fukuta Y. (2011). A set of near-isogenic lines for blast resistance genes with an indica-type rainfed lowland elite rice (Oryza sativa L.) genetic background. Field Crop Research 123: 19–27. https://doi.org/10.1016/j.fcr.2011.04.005

Li Y, Wang L, Jing J X, Li Z Q, Lin F, Huang L F and Pan Q H. (2007). The Pikm gene, conferring stable resistance to isolates of Magnaporthe oryzae, was finely mapped in a crossover-cold region on rice chromosome 11. Molecular Breeding 20: 179–188. https://doi.org/10.1007/s11032-007-9118-6

Ling Z Z, Mew T, Wang J L and Lei C L. (1995). Development of near-isogenic lines as international differential of the blast pathogen. International Rice Research Notes 20: 13–14.

Lu L, Wang Q, Jia Y, Bi Y Q, Li C Y, Fan H C and Li J. B. (2019). Selection and mutation of the avirulence gene AVR-Pii of the rice blast fungus Magnaporthe oryzae. Plant Pathology 68(1): 127–134. https://doi.org/10.1111/ppa.12935

Mackill D J and Bonman J M (1992). Inheritance of blast-resistance in near-isogenic lines of rice. Phytopathology 82: 746–749. https://doi.org/10.1094/Phyto-82-746

Poonsin R and Parinthawong N. (2020). Investigation of rice blast resistant genes in Thai elite rice varieties (Oryza sativa L.) for improvement of broad-spectrum blast disease resistance. International Journal of Agricultural Technology 16(1): 109–118.

Rehmeyer C, Li W, Kusaba M, Kim Y S, Brown D, Staben C, Dean R and Farman M. (2006). Organization of chromosome ends in the rice blast fungus, Magnaporthe oryzae. Nucleic Acids Research 34: 4685–4701. https://doi.org/10.1093/nar/gkl588

Rohlf F J. (2005). NTSYS-PC: Numerical taxonomy and multivariate analysis system, Version 2.2. Exeter Software, Setauket.

Romesburg H C. (1984). Cluster analysis for researchers. Belmont, CA: Lifetime Learning Publications.

Silva J C, Loreto E L and Clark J B. (2004). Factors that affect the horizontal transfer of transposable elements. Current Issues in Molecular Biology 6: 57–72.

Siti Norsuha M and Latiffah Z. (2019). Pathotype identification of rice blast pathogen, Pyricularia oryzae using differential varieties in Peninsular Malaysia. Tropical Life Sciences Research 30(2): 181–190. https://doi.org/10.21315/tlsr2019.30.2.13

Takagi H, Uemura A, Yaegashi H, Tamiru M, Abe A, Mitsuoka C, Saitoh H, Utsushi H, Natsume S, Kanzaki H, et al. (2013). MutMap-Gap: Whole-genome resequencing of mutant F2 progeny bulk combined with de novo assembly of gap regions identifies the rice blast resistance gene Pii. New Phytologist 200: 276–283. https://doi.org/10.1111/nph.12369

Telebanco-Yanoria M J, Koide Y, Fukuta Y, Imbe T, Kato H, Tsunematsu H and Kobayashi N. (2010). Development of near-isogenic lines of Japonica type rice variety Lijiangxintuanheigu as differentials for blast resistance. Breeding Science 60: 629–638. https://doi.org/10.1270/jsbbs.60.629

Tsunematsu H, Yanoria M J T, Ebron L A, Hayashi N, Ando I, Kato H, Imbe T and Khush G S. (2000). Development of monogenic lines of rice for rice blast resistance. Breeding Science 50: 229–234. https://doi.org/10.1270/jsbbs.50.229

Wang J C, Jia Y, Wen J W, Liu W P, Liu X M, Li L, Jiang Z Y, Zhang J H, Guo X L and Ren J P. (2013). Identification of rice blast resistance genes using international monogenic differentials. Crop Protection 45: 109–116. https://doi.org/10.1016/j.cropro.2012.11.020

Wang X, Jia Y, Shu Q Y and Wu D. (2008). Haplotype diversity at the Pi-ta locus in cultivated rice and its wild relatives. Phytopathology 98: 1305–1311. https://doi.org/10.1094/PHYTO-98-12-1305

Yasuda N, Noguchi M T and Fujita Y. (2006). Partial mapping of avirulence genes AVRPii and AVR-Pia in the rice blast fungus Magnaporthe oryzae. Canadian Journal of Plant Pathology 28: 494–498. https://doi.org/10.1080/07060660609507325

Yoshida K, Saitoh H, Fujisawa S, Kanzaki H, Matsumura H, Yoshida K, Yukio Y, Chuma I, Takano Y, Win J, Kamoun S and Terauchi R. (2009). Association genetics reveals three novel avirulence genes from the rice blast fungal pathogen Magnaporthe oryzae. Plant Cell 21(5): 1573–1591. https://doi.org/10.1105/tpc.109.066324

Zhou B, Dolan M, Sakai H and Wang G. (2007). The genomic dynamics and evolutionary mechanism of the Pi2/9 locus in rice. Molecular Plant-Microbe Interaction 20: 63–71. https://doi.org/10.1094/MPMI-20-0063

Zhu Y Y, Chen H R, Fan J H, Wang Y Y, Li Y, Chen J B, Fan J X, Yang S S, Hu L P, Leung H, Mew T W, Teng P S, Wang Z H and Mund C C. (2000). Genetic diversity and disease control in rice. Nature 406: 718–722. https://doi.org/10.1038/35021046