Metabarcoding of Parasitic Wasp, Dolichogenidea metesae (Nixon) (Hymenoptera: Braconidae) That Parasitizing Bagworm, Metisa plana Walker (Lepidoptera: Psychidae)

Main Article Content

Aqilah Sakinah Badrulisham
Muhammad Abdul-Latiff Abu Bakar
Badrul-Munir Md. Zain
Shukor Md-Nor
Mohd-Ridwan Abd Rahman
Nur Syafika Mohd-Yusof
Madihah Halim
Salmah Yaakop


Microbiome studies of the parasitoid wasp, Dolichogenidea metesae (Nixon) (Hymenoptera, Braconidae) are important because D. metesae has potential as a biological control agent to suppress the pest, Metisa plana Walker (Lepidoptera, Psychidae). Three field populations of parasitic wasps with different Integrated Pest Management (IPM) practices to control M. plana collected from Perak state (Tapah) and Johor state (Yong Peng and Batu Pahat districts) in Peninsular Malaysia were studied. Bacterial community composition and structure were analysed using ? and ? diversity metrics. Proteobacteria (83.31%) and Bacteroidetes (6.80%) were the most dominant phyla, whereas unknown family from order Rhizobiales was the most abundant family found in all populations followed by Pseudomonadaceae. Family Micrococcaceae was absent in Tapah. Rhizobiales gen. sp. and Pseudomonas sp. were abundant in all populations. Pearson’s correlation analysis showed the strongest correlation between individuals of Batu Pahat and Yong Peng (r = 0.89827, p < 0.05), followed by Tapah and Yong Peng with r = 0.75358, p < 0.05 and Batu Pahat and Tapah (r = 0.69552, p < 0.05). We hypothesise that low diversity and richness in Tapah might be due to direct and indirect effect of insecticides application. This preliminary data was the first study to do inventory of the microbiomes in the gut of the D. metesae.


Kajian mikrobiom ke atas spesies penyengat parasitoid, Dolichogenidea metesae (Nixon) (Hymenoptera, Braconidae) adalah penting kerana spesies ini berpotensi sebagai agen kawalan biologi untuk mengawal spesies perosak, Metisa plana Walker (Lepidoptera, Psychidae). Tiga populasi penyengat parasitoid yang mengaplikasikan Pengurusan Perosak Bersepadu (IPM) yang berbeza untuk mengawal M. plana iaitu daripada negeri Perak (Tapah) dan negeri Johor (Yong Peng dan Batu Pahat) di Semenanjung Malaysia telah dikaji. Komposisi dan struktur komuniti bakteria telah dianalisis menggunakan metrik kepelbagaian ? dan ?. Proteobacteria (83.31%) dan Bacteroidetes (6.80%) merupakan filum yang paling dominan, manakala famili yang tidak diketahui daripada order Rhizobiales ialah famili yang paling melimpah ditemui dalam kesemua populasi diikuti oleh Pseudomonadaceae. Famili Micrococcaceae didapati tidak hadir di populasi Tapah. Rhizobiales gen. sp. dan Pesudomonas sp. adalah paling melimpah di dalam semua populasi. Analisis korelasi Pearson menunjukkan korelasi yang paling tinggi di antara individu daripada Batu Pahat dan Yong Peng (r = 0.89827, p < 0.05) diikuti oleh Tapah dan Yong Peng dengan nilai r = 0.75358, p < 0.05 dan Batu Pahat dan Tapah (r = 0.69552, p < 0.05). Kami menghipotesis bahawa kepelbagaian dan kelimpahan yang rendah di Tapah mungkin disebabkan oleh kesan langsung dan tidak langsung penggunaan racun serangga. Data awalan ini merupakan kajian pertama yang melakukan inventori mikrobiom ke atas usus D. metesae.


Article Details

How to Cite
Aqilah Sakinah Badrulisham, Muhammad Abdul-Latiff Abu Bakar, Badrul-Munir Md. Zain, Shukor Md-Nor, Mohd-Ridwan Abd Rahman, Nur Syafika Mohd-Yusof, Madihah Halim, & Salmah Yaakop. (2022). Metabarcoding of Parasitic Wasp, Dolichogenidea metesae (Nixon) (Hymenoptera: Braconidae) That Parasitizing Bagworm, Metisa plana Walker (Lepidoptera: Psychidae). Tropical Life Sciences Research, 33(1), 23–42.
Original Article


Ali S R, Kamarudin A N, Wahid M B, Ahmad M N, Masri M M M and Din A K. (2007). Sistem pengurusan perosak bersepadu bagi kawalan ulat bungkus di ladang sawit. Malaysia: Lembaga Minyak Sawit Malaysia (MPOB).

Anusree Padmanabhan P S, Chellappan M and Kadarkutty H M. (2019). Characterization of endosymbionts of cotton mealybug (Phenacoccus solenopsis Tinsley) on okra using metagenomics approach. International Journal of Chemical Studies 7(1): 744–750.

Basri M W, Norman K and Hamdan A B. (1995). Natural enemies of the bagworm, Metisa plana Walker (Lepidoptera: Psychidae) and their impact on host population regulation. Crop Protection 14(8): 637–645.

Cardoza Y J, Hofstetter R W and Vega F E. (2012). Insect-associated microorganisms and their possible role in outbreaks. In: Barbosa P, Letourneau D K, Agrawal A A (Eds.). Insect outbreaks revisited. UK: John Wiley & Sons, Ltd, 155–174.

Chattopadhyay P, Banerjee G and Mukherjee S. (2017). Recent trends of modern bacterial insecticides for pest control practice in integrated crop management system. 3 Biotech 7(1): 60.

Cheong Y L, Sajap A S, Hafidzi M N, Omar D and Abood F. (2010). Outbreaks of bagworms and their natural enemies in an oil palm, Elaeis guineensis, plantation at Hutan Melintang, Perak, Malaysia. Journal of Entomology 7(3): 141–151.

Clarridge J E. (2004). Impact of 16S rRNA gene sequence analysis for identification of bacteria on clinical microbiology and infectious diseases. Clinical Microbiology Reviews 17(4): 840–862.

Colman D R, Toolson E C and Takacs-Vesbach C D. (2012). Do diet and taxonomy influence insect gut bacterial communities? Molecular Ecology 21(20): 5124–5137.

Douglas A E. (2015). Multiorganismal insects: Diversity and function of resident microorganisms. Annual Review of Entomology 60: 17–34.

Dudek K, Humi?ska K, Wojciechowicz J and Tryjanowski P. (2017). Metagenomic survey of bacteria associated with the invasive ladybird Harmonia axyridis (Coleoptera: Coccinellidae). European Journal of Entomology 114: 312–316.

Engel P and Moran N A. (2013). The gut microbiota of insects–diversity in structure and function. FEMS Microbiology Reviews 37(5): 699–735.

Fernández M D M, Meeus I, Billiet A, Van Nieuwerburgh F, Deforce D, Vandamme P, Viñuela E and Smagghe G. (2019). Influence of microbiota in the susceptibility of parasitic wasps to abamectin insecticide: Deep sequencing, esterase and toxicity tests. Pest Management Science 75: 79–86.

Freitas F C, e Castro A M C, Barbosa N C C P and Fernandes O A. (2018). Characterization and comparison of genetic variation in Cotesia flavipes (Hymenoptera: Braconidae) mass reared for biological pest control using microsatellite markers. Neotropical Entomology 47(4): 433–439.

Gualtieri L, Nugnes F, Nappo A G, Gebiola M and Bernardo U. (2017). Life inside a gall: Closeness does not favour horizontal transmission of Rickettsia between a gall wasp and its parasitoid. FEMS Microbiology Ecology 93(7): 1–15.

Haelewaters D, Zhao S Y, Clusella-Trullas S, Cottrell T E, De Kesel A, Fiedler L, Herz A, Hesketh H, Hui C, Kleespies R G, et al. (2017). Parasites of Harmonia axyridis: Current research and perspectives. BioControl 62: 355–371.

Halim M, Aman-Zuki A, Ahmad S Z S, Din A M M, Rahim A A, Masri M M M, Md- Zain B M and Yaakop S. (2018). Exploring the abundance and DNA barcode information of eight parasitoid wasps species (Hymenoptera), the natural enemies of the important pest of oil palm, bagworm, Metisa plana (Lepidoptera: Psychidae) toward the biocontrol approach and its application in Malaysia. Journal of Asia-Pacific Entomology 21(4): 1359–1365.

Halim M, Din A M M, Ahmad S Z S, Rahim A A, Masri M M M and Yaakop S. (2018). Evaluation of infestation in parasitoids on Metisa plana Walker (Lepidoptera: Psychidae) in three oil palm plantations in Peninsular Malaysia. Serangga 22: 135–149.

Hanysyam M, Fauziah I, Siti Khairiyah M H, Fairuz K, MohdRasdi Z, Nurul Zfarina M Z, Ismail R and Norazliza R. (2013). Assessment on the diversity of parasitoids of bagworms (Lepidoptera: Psychidae) in FELDA Gunung Besout 6, Sungkai, Perak. Paper presented at IEEE Symposium on Humanities, Science and Engineering Research (SHUSER), Hard Rock Hotel, Pulau Pinang, Malaysia, June, 131–135.

Harvey J A and Malcicka M. (2016). Nutritional integration between insect hosts and koinobiont parasitoids in an evolutionary framework. Entomologia Experimentalis et Applicata 159(2): 181–188.

Heppel L A. (1967). Selective release of enzymes from bacteria. Science 156(3781): 1451–1455.

Hilton S K, Castro-Nallar E, Pérez-Losada M, Toma I, McCaffrey T A, Hoffman E P, Siegel M O, Simon G L, Johnson W E and Crandall K A. (2016). Metataxonomic and metagenomic approaches vs. culture-based techniques for clinical pathology. Frontiers in Microbiology 7: 484.

Hooper L V. (2001). Commensal host-bacterial relationships in the gut. Science 292(5519): 1115–1118.

Janda J M and Abbott S L. (2007). 16S rRNA gene sequencing for bacterial identification in the diagnostic laboratory: pluses, perils, and pitfalls. Journal of Clinical Microbiology 45(9): 2761–2764.

Jeon Y S, Park S C. Lim J, Chun J and Kim B S. (2015). Improved pipeline for reducing erroneous identification by 16S rRNA sequences using the Illumina MiSeq platform. Journal of Microbiology 53(1): 60–69.

Kamarudin N and Arshad O. (2016). Diversity and activity of insect natural enemies of the bagworm (Lepidoptera: Psychidae) within an oil palm plantation in Perak, Malaysia. Journal of Oil Palm Research 28(3): 296–307.

Kamarudin N H, Walker A K, Wahid M B, LaSalle J and Polaszek A. (1996). Hymenopterous parasitoids associated with the bagworms Metisa plana and Mahasena corbetti (Lepidoptera: Psychidae) on oil palms in Peninsular Malaysia. Bulletin of Entomological Research 86(4): 423–439.

Kamarudin N, Ahmad S N, Arshad O and Wahid M B. (2010). Pheromone mass trapping of bagworm moths, Metisa plana Walker (Lepidoptera: Psychidae), for its control in mature oil palms in Perak, Malaysia. Journal of Asia-Pacific Entomology 13(2): 101–106.

Kamarudin N, Ali S R A, Masri, M M M, Ahmad M N, Manan C A H C and Kamarudin N. (2017). Controlling Metisa plana Walker (Lepidoptera: Psychidae) outbreak using Bacillus thuringiensis at an oil palm plantation in Slim River, Perak, Malaysia. Journal of Oil Palm Research 29(1): 47–54.

Kamarudin N, Seman I A and Masri M M M. (2019). Prospects in sustainable control of oil palm pests and diseases through the enhancement of ecosystem services: The way forward. Journal of Oil Palm Research 31(3): 381–393.

Klindworth A, Pruesse E, Schweer T, Peplies J, Quast C, Horn M and Glöckner F O. (2013). Evaluation of general 16S ribosomal RNA gene PCR primers for classical and next-generation sequencing-based diversity studies. Nucleic Acids Research 41(1): e1.

Kok C C, Eng O K, Razak A R, Arshad A M and Marcon P G. (2012). Susceptibility of bagworm Metisa plana (Lepidoptera: Psychidae) to chlorantraniliprole. Pertanika Journal of Tropical Agriculture Science 35: 149–163.

Koppik M, Thiel A and Hoffmeister T S. (2019). Egg laying rather than host quality or host feeding experience drives habitat estimation in the parasitic wasp Nasonia vitripennis. Ecology and Evolution 9(24): 14015–14022.

Krishnan M, Bharathiraja C, Pandiarajan J, Prasanna V A, Rajendhran J and Gunasekaran P. (2014). Insect gut microbiome: An unexploited reserve for biotechnological application. Asian Pacific Journal of Tropical Biomedicine 4 (Suppl. 1): S16–S21.

Licht T R and Bahl M I. (2018). Impact of the gut microbiota on chemical risk assessment. Current Opinion in Toxicology 15: 109–113.

Lim L and Ab Majid A H. (2021). Characterization of bacterial communities associated with blood-fed and starved tropical bed bugs, Cimex hemipterus (F.)(Hemiptera): A high throughput metabarcoding analysis. Scientific Reports 11(1): 1–12.

Mazmira M, Ramlah S, Najib M A, Norman K, Kushairi A and Wahid M B. (2011). Pest management of bagworm in southern Perak by aerial spraying with Bacillus thuringiensis. Oil Palm Bulletin 63: 24–33.

Mohammed M A, Aman-Zuki A, Yusof S, Md-Zain B M and Yaakop S. (2017). Prevalence and evolutionary history of endosymbiont Wolbachia (Rickettsiales: Anaplasmataceae) in parasitoids (Hymenoptera: Braconidae) associated with Bactrocera fruit flies (Diptera: Tephritidae) infesting carambola. Entomological Science 20(1): 382–395.

Nedoluzhko A V, Sharko F S, Tsygankova S V, Boulygina E S, Sokolov A S, Rastorguev S M, Kadnikov V V, Mardanov A V, Ravin N V, Mazur A M and Polilov A A. (2017). Metagenomic analysis of microbial community of a parasitoid wasp Megaphragma amalphitanum. Genomics Data 11: 87–88.

Osimani A, Milanovi? V, Garofalo C, Cardinali F, Roncolini A, Sabbatini R, De Filippis F, Ercolini D, Gabucci C, Petruzzelli A and Tonucci F. (2018). Revealing the microbiota of marketed edible insects through PCR-DGGE, metagenomic sequencing and real-time PCR. International Journal of Food Microbiology 276: 54–62.

Pandiarajan J and Krishnan M. (2018). Comparative bacterial survey in the gut of lepidopteran insects with different bionetwork. Microbiology 87: 103–115.

Paspati A, Ferguson K B, Verhulst E C, Urbaneja A, González-Cabrera J and Pannebakker B A. (2019). Effect of mass rearing on the genetic diversity of the predatory mite Amblyseius swirskii. Entomologia Experimentalis et Applicata 167(7): 670–681.

Phillips C D, Phelan G, Dowd S E, McDonough M M, Ferguson A W, Delton Hanson J, Siles L, Ordóñez-Garza N, San Francisco M and Baker R J. (2012). Microbiome analysis among bats describes influences of host phylogeny, life history, physiology and geography. Molecular Ecology 21(11): 2617–2627.

Potineni K and Saravanan L. (2013). Natural enemies of oil palm defoliators and their impact on pest population. Pest Management in Horticultural Ecosystems 19(2): 179–184.

Ray K J, Cotter S Y, Arzika A M, Kim J, Boubacar N, Zhou Z, Zhong L, Porco T C, Keenan J D, Lietman T M and Doan T. (2019). High-throughput sequencing of pooled samples to determine community-level microbiome diversity. Annals of Epidemiology 39: 63–68.

Sanchez-Contreras M and Vlisidou I. (2008). The diversity of insect-bacteria interactions and its applications for disease control. Biotechnology and Genetic Engineering Reviews 25: 203–244.

Shah N, Tang H, Doak T G and Ye Y. (2011). Comparing bacterial communities inferred from 16S rRNA gene sequencing and shotgun metagenomics. In: Altman R B, Dunker A K, Hunter L, Murray T A and Klein T E. (Eds.). Pacific Symposium on Biocomputing 2011. World Scientific, 165–176.

Shi W, Xie S, Chen X, Sun S, Zhou X, Liu L, Gao P, Kyrpides N C, No E G and Yuan J S. (2013). Comparative genomic analysis of the endosymbionts of herbivorous insects reveals eco-environmental adaptations: Biotechnology applications. PLoS Genetics 9(2): 1–12.

Sontowski R and van Dam N M. (2020). Functional variation in dipteran gut bacterial communities in relation to their diet, life cycle stage and habitat. Insects 11(8): 543.

Tasnim N, Abulizi N, Pither J, Hart M M and Gibson D L. (2017). Linking the gut microbial ecosystem with the environment: Does gut health depend on where we live? Frontiers in Microbiology 8: 1935.

Thomas T, Gilbert J and Meyer F. (2012). Metagenomics-a guide from sampling to data analysis. Microbial Informatics and Experimentation 2(1): 1–12.

Werren J H, Baldo L and Clark M E. (2008). Wolbachia: Master manipulators of invertebrate biology. Nature Reviews Microbiology 6: 741–751.

Whitfield J B. (2003). Phylogenetic insights into the evolution of parasitism in Hymenoptera. Advances in Parasitology 54: 69–101.

?. (2016). The braconid and ichneumonid parasitoid wasps: Biology, systematics, evolution and ecology. UK: John Wiley & Sons, Ltd.

Wooley J C and Ye Y. (2010). Metagenomics: Facts and artifacts, and computational challenges. Journal of Computer Science and Technology 25: 71–81.

Yun J H, Roh S W, Whon T W, Jung M J, Kim M S, Park D S, Yoon C, Nam Y D, Kim Y J, Choi J H and Kim J Y. (2014). Insect gut bacterial diversity determined by environmental habitat, diet, developmental stage, and phylogeny of host. Applied and Environmental Microbiology 80(17): 5254–5264.