Bacillus cereus for Controlling Bacterial Heart Rot in Pineapple var. MD2

Main Article Content

Naimah Husin
Zaiton Sapak


Bacterial heart rot (BHR) disease caused by pathogenic bacteria, Dickeya zeae, is one of the destructive diseases of pineapple worldwide. This study explored the potential of Bacillus cereus against the BHR pathogen in vitro and in vivo. The BHR causal pathogen was isolated from symptomatic pineapple plants, demonstrating water-soaked and rotten basal tissues. Biological control agent (BCA) was isolated from asymptomatic pineapple leaves, later confirmed as B. cereus, and subsequently tested for the antagonistic activity against the BHR pathogen via disc diffusion assay and glasshouse trial. B. cereus showed the ability to inhibit the growth of BHR pathogen with 18.10 ± 0.36 mm of inhibition zone in diameter. The ability of B. cereus against the BHR pathogen was further confirmed via the glasshouse trial with five treatments. The results showed that treatments with B. cereus inoculation recorded lower disease severity index of 0.04 ± 0.01 than the positive control treatment with pathogen alone (0.53 ± 0.04). This finding indicated that B. cereus has a great potential as BCA against BHR disease in pineapple var. MD2, however, the effectiveness of this isolate needs to be further tested under actual field conditions.


Penyakit reput teras (BHR) yang disebabkan oleh bakteria patogen, Dickeya zeae, ialah salah satu penyakit yang merosakkan tanaman nanas di seluruh dunia. Kajian ini mengkaji potensi Bacillus cereus sebagai agen kawalan penyakit BHR secara in vitro dan in vivo. Patogen BHR dipencilkan daripada tumbuhan nanas yang mempunyai simptom penyakit seperti tisu daun menjadi lepuh, berair dan busuk. Ejen kawalan biologi diasingkan daripada daun nanas yang tidak mempunyai penyakit, dan dikenal pasti sebagai sebagai B. cereus, dan seterusnya diuji untuk aktiviti antagonis terhadap patogen BHR melalui melalui ujian disc diffusion dan penelitian di rumah kaca. B. cereus menunjukkan keupayaan untuk menghalang pertumbuhan patogen BHR dengan 18.10 ± 0.36 mm diameter zon perencatan. Keupayaan B. cereus terhadap patogen BHR telah disahkan lagi melalui penelitian di rumah kaca dengan lima rawatan. Keputusan menunjukkan rawatan dengan inokulasi B. cereus mencatatkan indeks keterukan penyakit yang lebih rendah sebanyak 0.04 ± 0.01 daripada rawatan kawalan positif dengan patogen sahaja (0.53 ± 0.04). Penemuan ini menunjukkan bahawa B. cereus mempunyai potensi yang besar sebagai BCA terhadap penyakit BHR dalam varian nanas MD2, bagaimanapun, keberkesanan pengasingan ini perlu diuji lagi di bawah keadaan lapangan sebenar.

Article Details

How to Cite
Naimah Husin, & Zaiton Sapak. (2022). Bacillus cereus for Controlling Bacterial Heart Rot in Pineapple var. MD2. Tropical Life Sciences Research, 33(1), 77–89.
Original Article


Aeny T N, Suharjo R, Ginting C, Hapsoro D and Niswati, A. (2020). Characterization and host range assessment of Dickeya zeae associated with pineapple soft rot disease in East Lampung, Indonesia. Biodiversitas Journal of Biological Diversity 21(2): 587–595.

Ahmed T, Shahid M, Noman M, Niazi M B K, Mahmood F, Manzoor I, Zhang Y, Li B, Yang Y, Yan C and Chen J. (2020). Silver nanoparticles synthesized by using Bacillus cereus SZT1 ameliorated the damage of bacterial leaf blight pathogen in rice. Pathogen 9(3): 160.

Ali S, Ullah M I, Sajjad A, Shakeel Q and Hussain A. (2021). Environmental and health effects of pesticide residues. In Inamuddin et al. (eds). Sustainable Agriculture Reviews 48. Cham: Springer, 311–336.

Altendorf S. (2019). Major tropical fruits market review 2017. Rome: FAO. 10 pp.

Arif S, Liaquat F, Yang S, Shah I H, Zhao L, Xiong X, Garcia D and Zhang Y. (2021). Exogenous inoculation of endophytic bacterium Bacillus cereus suppresses clubroot (Plasmodiophora brassicae) occurrence in pak choi (Brassica campestris sp. chinensis L.). Planta 253(2): 1–15.

Balouiri M, Sadiki M, and Ibnsouda S K. (2016). Methods for in vitro evaluating antimicrobial activity: A review. Journal of Pharmaceutical Analysis 6(2): 71–79.

Food and Agriculture Organization (FAO). (2020). Medium-term outlook: Prospects for global production and trade in bananas and tropical fruits 2019 to 2028. Rome. (accessed on 1 March 2020).

Handelsman J, Raffel S, Mester E H, Wunderlich L and Grau C R. (1990). Biological control of damping-off of alfalfa seedlings with Bacillus cereus UW85. Applied and Environmental Microbiology 56(3): 713–718.

Hawkins N J, Bass C, Dixon A and Neve P. (2019). The evolutionary origins of pesticide resistance. Biological Reviews 94(1): 135–155.

Huang C J, Wang T K, Chung S C, and Chen C Y. (2005). Identification of an antifungal chitinase from a potential biocontrol agent, Bacillus cereus 28-9. BMB Reports 38(1): 82–88.

Huang W, Liu X, Zhou X, Wang X, Liu X and Liu H. (2020). Calcium signaling is suppressed in Magnaporthe oryzae conidia by Bacillus cereus HS24. Phytopathology 110(2): 309–316.

Joy P P and Sindhu G. (2012). Disease of pineapple (Ananas comosus): Pathogen, symptoms, infection, spread and management. Report of the Pineapple Research Station, Kerala Agriculture University, Kerala India.

Kaneshiro W S, Burger M, Vine B G, De Silva A S, and Alvarez A M. (2008). Characterization of Erwinia chrysanthemi from a bacterial heart rot of pineapple outbreak in Hawaii. Plant Disease 92(10): 1444–1450.

Kokalis-Burelle N, Backman P A, Rodríguez-Kábana R and Ploper L D. (1992). Potential for biological control of early leafspot of peanut using Bacillus cereus and chitin as foliar amendments. Biological Control 2(4): 321–328.

Ku Asmah K S and Sapak Z. (2020). Potential of Bacillus subtilis for controlling bacterial leaf blight pathogen in rice. Food Research 4(5):124–130.

Ku Y, Xu G, Tian X, Xie H, Yang X and Cao C. (2018). Root colonization and growth promotion of soybean, wheat, and Chinese cabbage by Bacillus cereus YL6. PloS One 13(12): e0210035.

Lee Y A, Chen K P and Hsu Y W. (2006). Characterization of Erwinia chrysanthemi, the soft-rot pathogen of white-flowered calla lily, based on pathogenicity and PCR-RFLP and PFGE analyses. Plant Pathology 55(4): 530–536.

Leite J A, Tulini F L, dos Reis-Teixeira F B, Rabinovitch L, Chaves J Q, Rosa N G, Cabral H, and De Martinis E C P. (2016). Bacteriocin-like inhibitory substances (BLIS) produced by Bacillus cereus: Preliminary characterization and application of partially purified extract containing BLIS for inhibiting Listeria monocytogenes in pineapple pulp. LWT-Food Science and Technology 72: 261–266.

Loh S C, Azlan A, Chan S H and Khoo H E. (2017). Extracts of peel and different parts of MD2 pineapple as potent nutraceuticals. Thai Journal of Pharmaceutical Sciences 41(5): 49–52.

Mattos K A, Pádua V L, Romeiro A, Hallack L F, Neves B C, Ulisses T M and MendonçaPreviato L. (2008). Endophytic colonization of rice (Oryza sativa L.) by the diazotrophic bacterium Burkholderia kururiensis and its ability to enhance plant growth. Anais da Academia Brasileira de Ciências 80(3): 477–493.

Malaysian Pineapple Industry Board (MPIB) (2020). Pengurusan tanaman nanas. Johor: Lembaga Perindustrian Nanas Malaysia.

Milner J L, Silo-Suh L, Lee J C, He H, Clardy J and Handelsman J O. (1996). Production of kanosamine by Bacillus cereus UW85. Journal of Applied and Environmental Microbiology 62(8): 3061–3065.

Navarro J, Hadjikakou M, Ridoutt B, Parry H and Bryan B A. (2021). Pesticide toxicity hazard of agriculture: Regional and commodity hotspots in Australia. Journal of Environmental Science & Technology 55(2): 1290–1300.

Ramachandran K, Manaf U A, and Zakaria L. (2015). Molecular characterization and pathogenicity of Erwinia spp. associated with pineapple (Ananas comosus (L.) Merr.) and papaya (Carica papaya L.). Journal of Plant Protection Research 55(4): 308–404.

Risøen P A, Rønning P, Hegna I K and Kolstø A B. (2004). Characterization of a broad range antimicrobial substance from Bacillus cereus. Journal of Applied Microbiology 96(4): 648–655.

Sapak Z, Sariah M and Ahmad Z A M. (2008). Effect of endophytic bacteria on growth and suppression of Ganoderma infection in oil palm. International Journal of Agriculture and Biology 10: 127–132.

Sidik S and Sapak Z. (2021). Evaluation of selected chemical pesticides for controlling bacterial heart rot disease in pineapples variety MD2. IOP Conference Series: Earth and Environmental Science 757(1): 1–10.

Silo-Suh L A, Stabb E V, Raffel S J and Handelsman J. (1998). Target range of zwittermicin A, an aminopolyol antibiotic from Bacillus cereus. Current Microbiology 37(1): 6–11.

Stabb E V, Jacobson L M and Handelsman J O. (1994). Zwittermicin A-producing strains of Bacillus cereus from diverse soils. Journal of Applied and Environmental Microbiology 60(12): 4404–4412.

Syafrudin M, Kristanti R A, Yuniarto A, Hadibarata T, Rhee J, Al-Onazi W A, Algarni, T S, Almarri A H and Al-Mohaimeed A M. (2021). Pesticides in drinking water: A review. International Journal of Environmental Research and Public Health 18(2): 468.

Thalip A A, Tong P S and Ng C. (2015). The MD2 super sweet pineapple (Ananas comosus). UTAR Agriculture Science Journal 1(4): 14–17.

Wang N, Wang L, Zhu K, Hou S, Chen L, Mi D, Gui Y, Qi Y, Jiang C, and Guo J H. (2019). Plant root exudates are involved in Bacillus cereus AR156 mediated biocontrol against Ralstonia solanacearum. Frontiers in Microbiology 10(98): 1–14.

Yin N, Zhao J, Liu R, Li Y, Ling J, Yang Y, Xie B and Mao Z. (2021). Biocontrol efficacy of Bacillus cereus strain Bc-cm103 against Meloidogyne incognita. Plant Disease 105(8): 2061–2070.

Zhou J, Feng Z, Liu S, Wei F, Shi Y, Zhao L, Huang W, Zhou Y, Feng H and Zhu H. (2021). CGTase, a novel antimicrobial protein from Bacillus cereus YUPP10, suppresses Verticillium dahliae and mediates plant defence responses. Molecular Plant Pathology 22(1): 130–144.