Naringenin-Grafted Polyvinyl Alcohol (Na/PVA) Nanoparticles: Synthesis, Characterisation and in vitro Evaluation of Its Antimicrobial Efficiency on Fresh Beef

Main Article Content

Syarifah Ab Rashid
Nur Suhaili Mohamad Rosli
Teo Siew Hway
Tong Woei Yenn
Leong Chean Ring
Fahmi Asyadi Md Yusof
Tan Wen-Nee

Abstract


Food preservatives are commonly used to guarantee the safety and quality of food. Naturally-derived preservatives are preferred by the consumers as chemical preservatives are associated with adverse side effects. The application of naringenin as a food preservative is restricted due to its high volatility, albeit known for its good efficacy in inhibiting microbial growth on food. Thus, this study aimed to synthesis and characterise naringenin-grafted PVA (Na/PVA) nanoparticles as potential meat preservative. The nano-size of naringenin was characterised by transmission electron microscopy. Finally, the antibacterial efficiency of Na/PVA nanoparticles substance was evaluated on disc diffusion assay, broth microdilution assay and using fresh beef as food model. The naringenin nanoparticles appeared in globule and smooth structure, with an average size of less than 200 nm. In total, 11.08% of naringenin nanoparticles was successfully encapsulated into PVA nanoparticles. Based on Fourier transform infrared spectra, naringenin was successfully encapsulated into PVA nanoparticles. The release of naringenin from Na/PVA nanoparticles was slow and gradual, with an initial burst release effect observed. The property was ideal for application in food model. It gained a plateau at 48 h. The Na/PVA nanoparticles depicted its antibacterial efficiency on all the test foodborne bacteria, except E. coli. It was represented by the presence of inhibition zones, which were ranged from 10 mm to 14 mm. The activity was concentration-dependent, and a higher concentration of nanoparticles was needed to kill the test bacteria. The meat coated with Na/PVA nanoparticles displayed a 100% reduction in bacterial load, where no bacterial growth was detected at the sample throughout the incubation period. The coating of nanoparticles also improved the organoleptic property of fresh beef, by maintain the meat colour. The developed nanoparticles can be potentially used nano-preservative to maintain the microbiological quality of fresh beef.


 


Pengawet makanan biasanya digunakan untuk menjamin keselamatan dan kualiti makanan. Pengawet semulajadi yang diperoleh ialah pilihan oleh pengguna kerana pengawet kimia dikaitkan dengan kesan sampingan yang buruk. Penggunaan naringenin sebagai pengawet makanan adalah terhad kerana turun naik yang tinggi, walaupun dikenali kerana keberkesanan yang baik dalam menghalang pertumbuhan mikrob pada makanan. Oleh itu, kajian ini bertujuan untuk mensintesis dan mencirikan nanozarah PVA (Na/PVA) naringenin sebagai pengawet daging yang berpotensi. Saiz nano naringenin dicirikan oleh mikroskopi elektron penghantaran. Akhirnya, kecekapan antibakteria bahan nanozarah Na/PVA dinilai pada disc diffusion assay, broth microdilution assay dan menggunakan daging lembu segar sebagai model kajian. Naringenin nanozarah muncul dalam globul dan struktur licin, dengan saiz purata kurang daripada 200 nm. Secara keseluruhan, 11.08% daripada naringenin nanozarah telah berjaya dimasukkan ke dalam nanozarah PVA. Berdasarkan pengubah spektra inframerah Fourier, naringenin berjaya dikapsulkan dalam nanozarah PVA. Pelepasan naringenin dari Na/PVA nanozarah adalah perlahan dan beransur-ansur, dengan kesan pelepasan mendadak diperhatikan pada fasa awal kajian. Sifat ini sesuai digunakan untuk menghalang pertumbuhan mikrob pada makanan. Ia mendapat dataran tinggi pada 48 h. Nanozarah Na/PVA menggambarkan kecekapan antibakteria pada semua bakteria bawaan makanan ujian, kecuali E. coli. Ia diwakili oleh kehadiran zon perencatan, yang berkisar dari 10 mm hingga 14 mm. Aktiviti ini bergantung kepada kepekatan, dan kepekatan nanozarah yang lebih tinggi diperlukan untuk membunuh bakteria ujian. Daging yang disalut dengan Na/PVA nanozarah menunjukkan pengurangan 100% dalam beban bakteria, di mana tiada pertumbuhan bakteria dikesan pada sampel sepanjang tempoh inkubasi. Lapisan nanozarah juga meningkatkan sifat organoleptik daging lembu segar, dengan mengekalkan warna daging. Nanozarah yang dibangunkan berpotensi digunakan nano-pengawet untuk mengekalkan kualiti mikrobiologi daging lembu segar.


Article Details

How to Cite
Naringenin-Grafted Polyvinyl Alcohol (Na/PVA) Nanoparticles: Synthesis, Characterisation and in vitro Evaluation of Its Antimicrobial Efficiency on Fresh Beef. (2022). Tropical Life Sciences Research, 33(1), 143–161. https://doi.org/10.21315/tlsr2022.33.1.9
Section
Original Article

References

Abebe E, Gugsa G and Ahmed M. (2020). Review on major food-borne zoonotic bacterial pathogens. Journal of Tropical Medicine 2020: 1–19. https://doi.org/10.1155/2020/4674235

Abu-Thabit N Y and Makhlouf A S H. (2018). Historical development of drug delivery systems: From conventional macroscale to controlled, targeted, and responsive nanoscale systems. Stimuli Responsive Polymeric Nanocarriers for Drug Delivery Applications 1: 3–41. https://doi.org/10.1016/b978-0-08-101997-9.00001-1

Agus S, Achmadi S S and Mubarik N R. (2017). Antibacterial activity of naringenin-rich fraction of pigeon pea leaves toward Salmonella thypi. Asian Pacific Journal Tropical Biomedicine 7(8): 725–728. https://doi.org/10.1016/j.apjtb.2017.07.019

Ahmed S A and Sarangi S K. (2013). Analysis of bacterial contamination in fresh and finished meat products and their molecular identification. International Journal of Pharmaceutical Science Invention 2(7): 27–32.

Alhosseini S N, Moztarzadeh F, Mozafari M, Asgari S, Dodel M, Samadikuchaksaraei A, Kargozar S, and Jalali N. (2012). Synthesis and characterization of electrospun polyvinyl alcohol nanofibrous scaffolds modified by blending with chitosan for neural tissue engineering. International Journal of Nanomedicine 7: 25–34. https://doi.org/10.2147/IJN.S25376

Andrade C A de, Carvalho JL de S, Cunico M M, Lordello A L L, Higaskino C E K, Almeida S C da C, Dias J de F G, Kerber V A, Miguel M D and Migue O G. (2010). Antioxidant and antibacterial activity of extracts, fractions and isolated substances from the flowers of Acacia podalyriifolia A. Cunn. ex G. Don. Brazilian Journal of Pharmaceutical Sciences 46(4): 715–722. https://doi.org/10.1590/s1984-82502010000400013

Appendini P and Hotchkiss J. (2002). Review of antimicrobial food packaging. Innovative Food Science and Emerging Technologies 3(2): 113–126. https://doi.org/10.1016/S1466-8564(02)00012-7

Bonin E, Carvalho V M, Avila V D, Aparecida dos Santos N C, Benassi-Zanqueta É, Contreras Lancheros C A, Previdelli I T S, Ueda-Nakamura T, Filho B A de A and Prado I N do. (2020). Baccharis dracunculifolia: Chemical constituents, cytotoxicity and antimicrobial activity. LWT 120: 108920. https://doi.org/10.1016/j.lwt.2019.108920

Borch E and Arinder P. (2002). Bacteriological safety issues in red meat and ready-toeat meat products, as well as control measures. Meat Science 62(3): 381–390. https://doi.org/10.1016/s0309-1740(02)00125-0.

Byun H and Hong B. (2008). Swelling behavior and drug release of poly(vinyl alcohol) hydrogel cross-linked with poly(acrylic acid). Macromolecular Research 16(3): 189–193. https://doi.org/10.1007/BF03218851.

Corley C A, Kobra K, Peloquin A J, Salmon K, Gumireddy L, Knoerzer T A, McMillen C D, Pennington W T, Schoffstall A M and Iacono S T. (2019). Utilizing the regioselectivity of perfluoropyridine towards the preparation of phenyoxyacetylene precursors for partially fluorinated polymers of diverse architecture. Journal of Fluorine Chemistry 228: 109409. https://doi.org/10.1016/j.jfluchem.2019.109409

Erkmen O and Bozoglu T F. (2016). Food Microbiology: Principles into practice, 1st ed.

New Jersey: John Wiley & Sons Ltd. Ezhilarasi P N, Karthik P, Chhanwal N and Anandharamakrishnan C. (2012). Nanoencapsulation techniques for food bioactive components: A review. Food and Bioprocess Technology 6(3): 628–647. https://doi.org/10.1007/s11947-012-0944-0

Food and Drug Administration. (2012). BAM chapter 1: Food sampling/preparation of sample homogenate. https://www.fda.gov/food/laboratory-methods-food/bamchapter-1-food-samplingpreparation-sample-homogenate (accessed on 2 March 2021).

Fuster M G, Carissimi G, Montalbán M G and Víllora G. (2020). Improving anticancer therapy with naringenin-loaded silk fibroin nanoparticles. Nanomaterials 10(4): 718. https://doi.org/10.3390/nano10040718

Gaba B, Khan T, Haider M, Alam T, Baboota S, Parvez S and Ali J. (2019). Vitamin E loaded naringenin nanoemulsion via intranasal delivery for the management of oxidative stress in a 6-OHDA Parkinson’s disease model. BioMed Research International 2019: 2382563. https://doi.org/10.1155/2019/2382563

Gassara F, Kouassi A P, Brar S K and Belkacemi K. (2016). Green alternatives to nitrates and nitrites in meat-based products: A review. Critical Reviews in Food Science and Nutrition 56(13): 2133–2148. https://doi.org/10.1080/10408398.2013.812610

Girma G. (2015). Prevalence, antibiogram and growth potential of Salmonella and Shigella in Ethiopia: Implications for public health: A review. Research Journal of Microbiology 10(7): 288–307. https://doi.org/10.3923/jm.2015.288.307

Gómez-Aldapa C A, Velazquez G, Gutierrez M C, Rangel-Vargas E, Castro-Rosas J and Aguirre-Loredo R Y. (2020). Effect of polyvinyl alcohol on the physicochemical properties of biodegradable starch films. Materials Chemistry and Physics 239: 122027. https://doi.org/10.1016/j.matchemphys.2019.122027

Jain D, Carvalho E, Banthia A K and Banerjee R. (2011). Development of polyvinyl alcohol–gelatin membranes for antibiotic delivery in the eye. Drug Development and Industrial Pharmacy 37: 167–177. https://doi.org/10.3109/03639045.2010.502533

Jamilah M B, Abbas K A and Rahman R A. (2008). A review on some organic acids additives as shelf life extenders of fresh beef cuts. American Journal of Agricultural and Biological Sciences 3(3): 566–574.

Ji P, Yu T, Liu Y, Jiang J, Xu J, Zhao Y, Hao Y, Qiu Y, Zhao W and Wu C. (2016). Naringeninloaded solid lipid nanoparticles: Preparation, controlled delivery, cellular uptake, and pulmonary pharmacokinetics. Drug Design, Development and Therapy 10: 911–925. https://doi.org/10.2147/DDDT.S97738

Joshi H, Hegde A R, Shetty P K, Gollavilli H, Managuli R S, Kalthur G and Mutalik S. (2018). Sunscreen creams containing naringenin nanoparticles: Formulation development and in vitro and in vivo evaluations. Photodermatology, Photoimmunology and Photomedicine 34: 69–81. https://doi.org/10.1111/phpp.12335

Kibret M and Abera B. (2011). Antimicrobial susceptibility patterns of E. coli from clinical sources in northeast Ethiopia. African Health Sciences 1(Suppl 1): S40–S45. https://doi.org/10.4314/ahs.v11i3.70069

Lee K A, Moon S-H, Lee J-Y, Kim K-T, Park Y-S and Paik H-D. (2013). Antibacterial activity of a novel flavonoid, 7-O-butyl naringenin, against methicillin-resistant Staphylococcus aureus (MRSA). Food Science and Biotechnology 22(6): 1725–1728. https://doi.org/10.1007/s10068-013-0272-9

Leong C-R, Kamarul Azizi M A, Taher M A, Wahidin S, Lee K-C, Tan W-N and Tong W-Y. (2017). Anthocyanins from Clitoria ternatea attenuate food-borne Penicillium expansum and its potential application as food biopreservative. Natural Product Sciences 23(2): 125. https://doi.org/10.20307/nps.2017.23.2.125

Li X, Wang L, and Wang B. (2017). Optimization of encapsulation efficiency and average particle size of Hohenbuehelia serotina polysaccharides nanoemulsions using response surface methodology. Food Chemistry 229: 479–486. https://doi.org/10.1016/j.foodchem.2017.02.051

Mai-Prochnow A, Clauson M, Hong J and Murphy, A B. (2016). Gram positive and Gram negative bacteria differ in their sensitivity to cold plasma. Scientific Reports 6: 38610. https://doi.org/10.1038/srep38610

Mansur H S, Sadahira C M, Souza A N and Mansur A A. (2008). FTIR spectroscopy characterization of poly (vinyl alcohol) hydrogel with different hydrolysis degree and chemically cross-linked with glutaraldehyde. Materials Science and Engineering: C 28(4): 539–548. https://doi.org/10.1016/j.msec.2007.10.088

Moreira B R, Pereira-Júnior M A, Fernandes K F and Batista K A. (2020). An ecofriendly edible coating using cashew gum polysaccharide and polyvinyl alcohol. Food Bioscience 37: 100722. https://doi.org/10.1016/j.fbio.2020.100722

Nandiyanto A B D, Oktiani R and Ragadhita R. (2019). How to read and interpret FTIR spectroscope of organic material. Journal of Science and Technology 4(1): 97–118. https://doi.org/10.17509/ijost.v4i1.15806

Ng K R, Lyu X, Mark R and Chen W N. (2019). Antimicrobial and antioxidant activities of phenolic metabolites from flavonoid-producing yeast: Potential as natural food preservatives. Food Chemistry 270: 123–129. https://doi.org/10.1016/j.foodchem.2018.07.077

Sahadan M Y B, Tong W Y, Tan W N, Leong C R, Misri M N B, Chan M and Shaharuddin S. (2019). Phomopsidione nanoparticles coated contact lenses reduce microbial keratitis causing pathogens. Experimental Eye Research 178: 10–14. https://doi.org/10.1016/j.exer.2018.09.011

Silhavy T J, Kahne D and Walker S. (2010). The bacterial cell envelope. Cold Spring Harbor Perspectives in Biology 2(5): a000414

Silva M and Lidon F. (2016). Food preservatives-An overview on applications and side effects. Emirates Journal of Food and Agriculture 28(6): 366. https://doi.org/10.9755/ejfa.2016-04-351

Takahama S, Johnson A and Russell L M. (2013). Quantification of carboxylic and carbonyl functional groups in organic aerosol infrared absorbance spectra. Aerosol Science and Technology 47(3): 310–325. https://doi.org/10.1080/02786826.2012.752065

Teng J, Li Y, Yu W, Zhao Y, Hu X, Tao, N-P and Wang M. (2018). Naringenin, a common flavanone, inhibits the formation of AGEs in bread and attenuates AGEs-induced oxidative stress and inflammation in RAW264.7 cells. Food Chemistry 269: 35–42. https://doi.org/10.1016/j.foodchem.2018.06.126

Teng J, Liu X, Hu X, Zhao Y, Tao N-P and Wang M. (2018). Dihydromyricetin as a functional additive to enhance antioxidant capacity and inhibit the formation of thermally induced food toxicants in a cookie model. Molecules 23(2184): 1–11. http://dx.doi.org/10.3390/molecules23092184

Tong W Y, Ang S N, Darah I and Latiffah Z. (2014). Antimicrobial activity of Penicillium minioluteum ED24, an endophytic fungus residing in Orthosiphon stamineus Benth. World Journal Pharmacy and Pharmaceutical Science 3: 121–132.

Tsigarida E and Nychas G J E. (2001). Ecophysiological attributes of a Lactobacillus spp. and a Pseudomonas spp. on sterile beef fillets in relation to storage temperature and film permeability. Journal of Applied Microbiology 90: 696–705. https://doi.org/10.1046/j.1365-2672.2001.01292.x

Wang T, Turhan M and Gunasekaran S. (2004). Selected properties of pH-sensitive, biodegradable chitosan-poly(vinyl alcohol) hydrogel. Polymer International 53(7): 911–918. https://doi.org/10.1002/pi.1461

Yen F Y, Wu T H, Lin L T, Cham T M and Lin C C. (2009). Naringenin-loaded nanoparticles improve the physicochemical properties and the hepatoprotective effects of naringenin in orally-administered rats with CCl4-induced acute liver failure. Pharmaceutical Research 26(4): 893–902. https://doi.org/10.1007/s11095-008- 9791-0

Zanela J, Blick A P, Casagrande M, Grossmann M V E and Yamashita F. (2018). Polyvinyl alcohol (PVA) molecular weight and extrusion temperature in starch/PVA biodegradable sheets. Polímeros 28: 256–265. https://doi.org/10.1590/0104-1428.03417

Zhang J, Li L, Xu J and Sun D. (2014). Effect of cetyltrimethylammonium bromide addition on the emulsions stabilized by montmorillonite. Colloid and Polymer Science 292(2): 441–447. https://doi.org/10.1007/s00396-013-3089-4