Assessing the Suitability of Habitats for Porphyrio porphyrio indicus and Amaurornis phoenicurus in Urban Wetlands of Peninsular Malaysia
Main Article Content
Abstract
It becomes imperative to understand the eco-climatic predictors and know the suitable habitat for Porphyrio porphyrio indicus and Amaurornis phoenicurus in the urban wetlands to prevent their local extinction. The study explored the habitat suitability for Porphyrio porphyrio indicus and Amaurornis phoenicurus in Paya Indah Wetlands and Putrajaya Wetlands of Peninsular Malaysia. Porphyrio porphyrio indicus and Amaurornis phoenicurus surveyed using the point count technique, and a stratified random design. The maximum entropy modelling (MEM) approach and geographic information systems employed to determine the influence of seventeen eco-climatic factors on the suitable habitats for the species. Water at a minimum depth (44.30%) and rainfall (74.20%) contributed to the availability of suitable habitats for Porphyrio porphyrio indicus in Paya Indah and Putrajaya wetlands. Also, dissolved oxygen (56.60%) and salinity (43.50%) contributed to habitat suitability for Amaurornis phoenicurus in Paya Indah and Putrajaya wetlands. Large portions of the two urban wetlands were unsuitable for the Porphyrio porphyrio indicus and Amaurornis phoenicurus populations because of several eco-climatic factors. Thus, the models as management tools with a robust population monitoring database and framework would enhance the management effectiveness of the two species and urban wetlands.
Article Details
This work is licensed under a Creative Commons Attribution 4.0 International License.
References
Aguirre-Gutierrez J, Carvalheiro L G, Polce C, van Loon E E, Raes N, Reemer M and Biesmeijer J C. (2013). Fit-for-purpose: Species distribution model performance on evaluation criteria – Dutch hoverflies as a case study. PLoS ONE 8(5): e63708. https://doi.org/10.1371/journal.pone.0063708
Anderson J, Hardy E, Roach J and Witmer R. (1976). A land use and land cover classification system for use with remote sensor data. Washington DC: Scientific Research Publishing. https://doi.org/10.3133/pp964
Bai J H, Lu Q Q, Zhao Q Q, Wang J J and Ouyang H. (2013). Effects of alpine wetland landscapes on regional climate. Advances in Meteorology 2013: 972430. https://doi.org/10.1155/2013/972430
Bara M, Merzoug S E, Khelifa R, Bouslama Z and Houhamdi M. (2014). Aspects of breeding ecology of the purple swamphen Porphyrio porphyrio in the wetland complex of Guerbes-Sanhadja, Northeast of Algeria. Ostrich 85: 185–191. https://doi.org/10.2989/00306525.2014.971901
Bibby C, Jones M and Marsden S. (2000). Expedition field techniques-bird surveys. Cambridge: Bird Life International Publication.
BirdLife BHDTF. (2013). Setting conservation objectives for birds. Interim Position on standards and approaches for defining the Favorable Conservation Status of birds (focus on the national/sub-national level). EU Birds and Habitats Directives Task Force. 19 pp.
BirdLife International. (2004). Birds in Europe: Population estimates, trends and conservation status. Cambridge, UK: BirdLife International.
_______. (2016). Amaurornis phoenicurus. The IUCN red list of threatened species. https://doi.org/10.2305/IUCN.UK.20163.RLTS.T22692640A95217833.en. (accessed on 30 October 2018).
_______. (2020). Country profile: Malaysia. http://www.birdlife.org-/datazone/country/malaysia. (accessed on 24 April 2020).
Breaban I G, Gheteu D and Paiu M. (2012). Determination of water quality index of Jijia and Miletin ponds. Bulletin UASVM Agriculture 69(2): 160–167. https://doi.org/10.15835/buasvmcn-agr:8745
Breiman L. (2001a). Random forests. Machine Learning 45(1): 5–32. https://doi.org/10.1023/A:1010933404324
_______. (2001b). Statistical modeling: The two cultures. Statistical Science 16: 199–231. https://doi.org/10.1214/ss/1009213726
Brinkmann K, Homann E and Buerkert A. (2020). Spatial and temporal dynamics of urban wetlands in an Indian megacity over the past 50 years. Remote Sensing 12: 662. https://doi.org/10.3390/rs12040662
Brotons L, Thuiller W, Miguel B and Hirzel A H. (2004). Presence-absence versus presenceonly modelling methods for predicting bird habitat suitability. Ecography 27: 437–448. https://doi.org/10.1111/j.0906-7590.2004.03764.x
Busby J R. (1991). Bioclim, a bioclimatic analysis and prediction system. In Margules C R and Austin M P (eds.), Nature conservation: Cost effective biological surveys and data analysis. Canberra: CSIRO, 64–68.
Carpenter G, Gillison A N and Winter J. (1993). A flexible modelling procedure for mapping potential distributions of plants and animals. Biodiversity and Conservation 2: 667–680. https://doi.org/10.1007/BF00051966
Catford J A, Roberts J, Capon S J, Froend R H, Windecker S M and Douglas M M. (2017). Wetland Vegetation of Inland Australia. In Keith D A (Ed.), Australian vegetation, 3rd ed. Cambridge: Cambridge University Press, 490–515.
David R B and Stockwell D. (2006). Improving ecological niche models by data mining large environmental datasets for surrogate models. Ecological Modelling 192: 188–196. https://doi.org/10.1016/j.ecolmodel.2005.05.029
Dong Z, Wang Z, Liu D, Li L, Ren C, Tanga X. et al. (2013). Assessment of habitat suitability for waterbirds in the West Songnen Plain, China, using remote sensing and GIS. Ecological Engineering 55: 94–100. https://doi.org/10.1016/j.ecoleng.2013.02.006
Dunn E H, Bart J, Collins B T, Craig B, Dale B, Downes C M, Francis C M, Woodley Sand Zorn P. (2006). Monitoring bird populations in small geographic areas (Special Publication). Canada: Canadian Wildlife Service.
Ehrenfeld J G. (2008). Exotic invasive species in urban wetlands: Environmental correlates and implications for wetland management. Journal of Applied Ecology 45(4): 1160–1169. https://doi.org/10.1111/j.1365-2664.2008.01476.x
Elith J, Graham C H, Anderson R P, Dudík M, Ferrier S, Guisan A, Hijmans R J, Huettmann F, Leathwick J R, Lehmann A, et al. (2006). Novel methods improve prediction of species’ distributions from occurrence data. Ecography 29: 129–151. https://doi.org/10.1111/j.2006.0906-7590.04596.x
Elith J. (2000). Quantitative methods for modelling species habitat: comparative performance and an application to Australian plants. In S Ferson and M Burgman (Eds.), Quantitative methods for conservation biology. New York: Springer, 39–58. https://doi.org/10.1007/0-387-22648-6_4
ERDAS. (2014). ERDAS imagine 2014. Peachtree Corners Circle Norcross: Hexagon Geospatial. Esper J, Frank D C, Timonen M, Zorita E, Wilson R J S, Luterbacher J and Buntgen U. (2012). Orbital forcing of tree-ring data. Nature Climate Change 2(12): 862–866. https://doi.org/10.1038/nclimate1589
Ferrier S, Manion G, Elith J and Richardson K. (2007). Using generalized dissimilarity modelling to analyse and predict patterns of beta diversity in regional biodiversity assessment. Diversity and Distributions 13(3): 252–264. https://doi.org/10.1111/j.1472-4642.2007.00341.x
Franklin J. (1995). Predictive vegetation mapping: geographic modelling of biospatial patterns in relation to environmental gradients. Progress in Physical Geography 19(4): 474–499. https://doi.org/10.1177/030913339501900403
Friedman J H. (1991). Multivariate adaptive regression splines. The Annals of Statistics 19: 1–67. https://doi.org/10.1214/aos/1176347963
Gawlik D E. (2002). The effects of prey availability on the numerical response of wading birds. Ecological Monographs 72(3): 329–346. https://doi.org/10.1890/0012-9615(2002)072[0329:TEOPAO]2.0.CO;2
Guisan A and Zimmermann N E. (2000). Predictive habitat distribution models in ecology. Ecological Modelling 135: 147–186. https://doi.org/10.1016/S0304-3800(00)00354-9
Gumbricht T, Roman-Cuesta R M, Verchot L V, Herold M, Wittmann F, Householder E, Herold N and Murdiyarso D. (2017). Tropical and subtropical wetlands distribution version 2. https://doi.org/10.17528/CIFOR/DATA.00058
Haq R U, Eiam-Ampai K, Ngoprasert D, Sasaki N and Shrestha R P. (2018). Changing landscapes and declining populations of resident waterbirds: A 12-year study in Bung Boraphet Wetland, Thailand. Tropical Conservation Science 11: 1–17. https://doi.org/10.1177/1940082917750839
Hassen-Aboushiba A B. (2015). Assessing the effects of aquatic vegetation composition on waterbird distribution and richness in natural freshwater lake of Malaysia. American Journal of Life Sciences 3(4): 316–321. https://doi.org/10.11648/j.ajls.20150304.20
Hijmans R J, Guarino L, Cruz M and Rojas E. (2001). Computer tools for spatial analysis of plant genetic resources data 1. DIVA-GIS. Plant Genetic Resources News 127: 15–19.
Hirzel A H, Helfer V and Metral F. (2001). Assessing habitat-suitability models with a virtual species. Ecological Modelling 145: 111–121. https://doi.org/10.1016/S0304-3800(01)00396-9
Hirzel A Z and Lay G L. (2008). Habitat suitability modelling and niche theory. Journal of Applied Ecology 45: 1372–1381. https://doi.org/10.1111/j.1365-2664.2008.01524.x
Hosmer D and Lemeshow S. (2000). Applied logistic regression. New York, NY: WileyInterscience. https://doi.org/10.1002/0471722146
House M A and Ellis J B. (1987). The development of water quality indices for operational management. Water Science and Technology 19: 145–154. https://doi.org/10.2166/wst.1987.0076
Hutto R L and Young J S. (2002). Regional landbird monitoring: Perspectives from the Northern Rocky-Mountains. Wildlife Society Bulletin 30: 738–758.
Ismail A and Rahman F. (2013). Does weather play an important role in the early nesting activity of colonial waterbirds? A case study in Putrajaya Wetlands, Malaysia. Tropical Life Sciences Research 24(1): 1–7.
Jahanbakhsh G M, Khorasani N, Morshedi J, Danehkar A and Naderi M. (2017). Factors influencing abundance and species richness of overwintered waterbirds in Parishan International Wetland in Iran. Applied Ecology and Environmental Research 15(4): 1565–1579. https://doi.org/10.15666/aeer/1504_15651579
Jenks G F. (1967). The data model concept in statistical mapping. International Yearbook of Cartography 7: 186–190. Johnson K G, Allen M S and Havens K E. (2007). A review of littoral vegetation, fisheries, and wildlife responses to hydrologic variation at Lake Okeechobee. Wetlands 27(1): 110–126. https://doi.org/10.1672/0277-5212(2007)27[110:AROLVF]2.0.CO;2
Jordan D P. (2017). Waterbirds in a changing world: Effects of climate, habitat and conservation policy on European waterbirds. PhD dissertation, University of Helsinki, Helsinki, Finland.
Kansiime F, Kateyo E, Oryem-Origa H and Mucunguzi P. (2007). Nutrient status and retention in pristine and disturbed wetlands in Uganda: Management implications. Wetland Ecological Management 15: 453–467. https://doi.org/10.1007/s11273-007-9054-6
Kassara C, Gangoso L, Mellone U, Piasevoli G, Hadjikyriakou T G, Tsiopelas N, Giokas S, López-López P, Urios V, Figuerola J, et al. (2017). Current and future suitability of wintering grounds for a long-distance migratory raptor. Scientific Reports 7: 8798. https://doi.org/10.1038/s41598-017-08753-w
Knight Y, Yu B, Jenkins G and Morris K. (2005). Comparing rainfall interpolation techniques for small subtropical urban catchments. In Proceedings of Scientific Conference, Modelling and Simulation (pp. 1674–1680), University of Western Australia, Nedlands.
Lee C W, Kim G Y, Jang J D, Bhandari B B and Joo G J. (2006). Water level fluctuation and habitat use pattern of wintering waterbirds in the Junam Reservoir Area, South Korea. Journal of Bioscience 7(2): 79–92.
Lehmann A, Overton J M and Leathwick J R. (2003). GRASP: Generalized regression analysis and spatial prediction. Ecological Modelling 160: 165–183. https://doi.org/10.1016/S0304-3800(02)00354-X
Li X, Cheng R, Xiao W, Sun G, Ma T, Liu F, Liu X, Qian F and Pan K. (2021). Assessment the suitability of wintering anatidae habitats before and after impoundment in the three gorges reservoir region. Sustainability 13: 4743. https://dx.doi.org/10.3390/su13094743
Li X, Mitra C, Dong L and Yang Q. (2018). Understanding land use change impacts on microclimate using Weather Research and Forecasting (WRF) model. Physics and Chemistry of the Earth, Parts A/B/C 103: 115–126. https://doi.org/10.1016/j.pce.2017.01.017
Lloyd J D and Doyle T. (2011). Abundance and population trends of mangrove landbirds in southwest Florida. Journal of Field Ornithology 82: 132–139. https://doi.org/10.1111/j.1557-9263.2011.00315.x
Lobo J M, Enez-Valverde A J and Real R. (2008). AUC: A misleading measure of the performance of predictive distribution models. Global Ecology and Biogeography 17: 145–151. https://doi.org/10.1111/j.1466-8238.2007.00358.x
Longcore J R, McAuley D G, Pendelton G W, Bennatti C R, Mingo T M and Stromborg K L. (2006). Macroinvertebrate abundance, water chemistry, and wetland characteristics affect use of wetlands by avian species in Maine. Hydrobiologia 567: 143–167. https://doi.org/10.1007/s10750-006-0055-x
Ma Z, Cai Y, Li B and Chen J. (2010). Managing wetland habitats for waterbirds: An international perspective. Wetlands 30: 15–27. https://doi.org/10.1007/s13157-009-0001-6
Marasinghe S, Simpson G D, Newsome D and Perera P. (2020). Scoping recreational disturbance of shorebirds to inform the agenda for research and management in Tropical Asia. Tropical Life Sciences Research 31(2): 51–78. https://doi.org/10.21315/tlsr2020.31.2.4
Martins C O, Rajpar M N, Nurhidayu S and Zakaria M. (2017). Habitat selection of Dendrocygna javanica in heterogeneous lakes of Malaysia. Journal of Biodiversity Management and Forestry 6(3): 1–6. https://doi.org/10.4172/2327–4417.1000183
Minns C K. (1989). Factors affecting fish species richness in Ontario lakes. Transactions of the American Fisheries Society 76: 332–334.
Mundava J, Caron A, Gaidet N, Couto F M, Couto J T, De Garine-Wichatitsky M and Mundy P J. (2012). Factors influencing long-term and seasonal waterbird abundance and composition at two adjacent lakes in Zimbabwe. Ostrich 83(2): 69–77. https://doi.org/10.2989/00306525.2012.692726
Mundkur T, Langendoen T and Watkins D. (2017). The Asian Waterbird Census 2008–2015:results of coordinated counts in Asia and Australasia. Ede: Wetlands International.
Nagy S, Breiner F T, Anand M, Butchart S H M, Rke M F, Fluet-Chouinard E, Guisan A, Hilarides L, Jones V R, Kalyakin M, et al. (2021). Climate change exposure of waterbird species in the African-Eurasian flyways. Cambridge: Cambridge University Press, 1–26. https://doi.org/10.1017/S0959270921000150
Neice A A and McRae S B. (2021). Mapping habitat suitability for the Eastern Black Rail throughout its Atlantic coastal range using maximum entropy (MaxEnt). Avian Conservation and Ecology 16(1): 23. https://doi.org/10.5751/ACE-01919-160123
Pearlstine E V and Ortiz J S. (2009). A natural history of the purple swamphen (Porphyrioporphyrio). Gainsville: Institute of Food and Agricultural Sciences, University of Florida. https://doi.org/10.32473/edis-uw317-2009
Pearson R G, Dawson T P, Berry P M and Harrison P A. (2002). SPECIES: A spatial evaluation of climate impact on the envelope of species. Ecological Modelling 154: 289–300. https://doi.org/10.1016/S0304-3800(02)00056-X
Phillips S J, Anderson R P and Schapire R E. (2006). Maximum entropy modeling of species geographic distributions. Ecological Modelling 190: 231–259. https://doi.org/10.1016/j.ecolmodel.2005.03.026
Porte D S and Gupta S. (2017). Assessment of distribution patterns of wetland birds between unpolluted and polluted ponds at Ratanpur, District Blaspur, Chhattisgarh, India. Indian Journal Science Research 12(2): 204–215.
Rajpar M N and Zakaria M. (2011). Effects of water level fluctuation on waterbirds distribution and aquatic vegetation composition at natural wetland reserve, Peninsular Malaysia. ISRN Ecology 2011: 324038. https://doi.org/10.5402/2011/324038
_______. (2012). Avian community parameters of a freshwater wetland ecosystem in Peninsular Malaysia. Asia Life Sciences 21(2): 409–428.
_______. (2013). Assessing an artificial wetland in Putrajaya, Malaysia, as an alternate habitat for waterbirds. Waterbirds 36(4): 482–493. https://doi.org/10.1675/063.036.0405
_______. (2014). Effects of habitat characteristics on waterbird distribution and richness in wetland ecosystem of Malaysia. Journal of Wildlife and Parks 28: 107–122.
Rajpar M N, Zakaria M, Ozdemir I, Ozturk M and Gucel S. (2017). Avian assemblages at Paya Indah Natural Wetland Reserve, Malaysia. Expert Opinion on Environmental Biology 6(3).
Rushton S P, Ormerod S J and Kerby G. (2004). New paradigms for modelling species distributions? Journal of Applied Ecology 41(2): 193–200. https://doi.org/10.1111/j.0021-8901.2004.00903.x
Salari A, Zakaria M, Nielsen C C and Boyce M S. (2014). Quantifying tropical wetlands using field surveys, spatial statistics and remote sensing. Wetlands 34: 565–574. https://doi.org/10.1007/s13157-014-0524-3
Sathe S S, Khabade S and Hujare M. (2001). Hydrobiological studies on two manmade reservoirs from Tasgaontahashil (Maharashtra). Ecological Environment and Construction 7(2): 211–217.
Sekercioglu C H, Primack R B and Wormworth J. (2012). The effects of climate change on tropical birds. Biological Conservation 148: 1–18. https://doi.org/10.1016/j.biocon.2011.10.019
Soulliere G J, Potter B A, Coluccy J M, Gatti R C, Roy C L, Luukkonen D R, et al. (2007). Upper Mississippi River and Great Lakes Region joint venture waterfowl habitat conservation strategy. Fort Snelling, Minnesota: U.S. Fish and Wildlife Service.
Stockwell D R B and Peters D. (1999). The GARP modelling system: Problems and solutions to automated spatial prediction. International Journal of Geographical Information Science 13: 143–158. https://doi.org/10.1080/136588199241391
Sulai P, Nurhidayu S, Aziz N, Zakaria M, Barclay H and Azhar B. (2015). Effects of water quality in oil palm production landscapes on tropical waterbirds in Peninsular Malaysia. Ecological Research 30(5): 941–949. https://doi.org/10.1007/s11284-015-1297-8
Tanalgo K C, Pineda J A F, Agravante M E and Amerol Z M. (2015). Bird diversity and structure in different land-use types in lowland south-central Mindanao, Philippines. Tropical Life Sciences Research 26(2): 85–103.
Tang Z Y, Fang J Y, Sun J Y and Gaston K J. (2011). Effectiveness of protected areas in maintaining plant production. PLoS ONE 6(4): 1–8. https://doi.org/10.1371/journal.pone.0019116
Taylor B and Van Perlo B. (1998). Rails: A guide to the Rails. Crakes, Gallinules and Coots of the World. Sussex: Pica Press.
Taylor B. (2016). Purple Swamphen (Porphyrio porphyrio). In del Hoyo J, Elliott A, Sargatal J, Christie D A, de Juana E, eds. Handbook of the birds of the world alive. Barcelona: Lynx Edicions.
Thapa J B and Saund T B. (2012). Water quality parameters and bird diversity in Jagdishpur Reservoir, Nepal. Nepal Journal of Science and Technology 13(1): 143–155. https://doi.org/10.3126/njst.v13i1.7453
Thuiller W, Lafourcade B, Engler R and Araujo M B. (2009). BIOMOD: A platform for ensemble forecasting of species distributions. Ecography 32: 369–373. https://doi.org/10.1111/j.1600-0587.2008.05742.x
Thuiller W. (2003). BIOMOD: optimising predictions of species distributions and projecting potential future shifts under global change. Global Change Biology 9: 1353–1362. https://doi.org/10.1046/j.1365-2486.2003.00666.x
Tian B, Zhou Y X, Zhang L Q and Yuan L. (2008). Analysing the habitat suitability for migratory birds at the ChongmingDongtan Nature Reserve in Shanghai, China. Estuarine, Coastal and Shelf Science 80: 296–302. https://doi.org/10.1016/j.ecss.2008.08.014
Tozer D C, Nol E and Abraham K F. (2010). Effects of local and landscape-scale habitat variables on abundance and reproductive success of wetland birds. Wetlands Ecology and Management 18(6): 679–693. https://doi.org/10.1007/s11273-010-9187-x
Tucker K, Rushton S R, Sanderson R A, Martin E B and Blaiklock J. (1997). Modelling bird distributions – a combined GIS and Bayesian rule-based approach. Journal of Landscape Ecology 12: 77–93. https://doi.org/10.1007/BF02698209
Vallecillo S, Maes J, Polce C and Lavalle C. (2016). A habitat quality indicator for common birds in Europe based on species distribution models. Ecological Indicators 69: 488–499. https://doi.org/10.1016/j.ecolind.2016.05.008
Van Niekerk J H. (2010). Assemblages and movements of waterfowl at cattle feedlots across Gauteng, South Africa. Ostrich 81: 31–37. https://doi.org/10.2989/00306525.2010.455816
Vanagas G. (2004). Receiver operating characteristic curves and comparison of cardiac surgery risk stratification systems. Interactive CardioVascular and Thoracic Surgery 3: 319–322. https://doi.org/10.1016/j.icvts.2004.01.008
Vapnik V and Izmailov R. (2018). Rethinking statistical learning theory: Learning using statistical invariants. Machine Learning 108: 381–423. https://doi.org/10.1007/s10994-018-5742-0
Wainger L and Mazzotta M. (2011). Realizing the potential of ecosystem services: a framework for relating ecological changes to economic benefits. Environmental Management 48: 710–733. https://doi.org/10.1007/s00267-011-9726-0
Wang Z, Zhang B, Zhang X and Tian H. (2019). Using MaxEnt model to guide marsh conservation in the Nenjiang River Basin, Northeast China. Chinese Geographical Science 29(6): 962–973. https://doi.org/10.1007/s11769-019-1082-7
Wetlands International (2018). Wetland international annual report. https://www.wetlands.org/publications/the-source-annual-review-and-accounts-2018/
Wormworth J and Mallon K. (2014). Bird species and climate change: The global status report version 1.0. World Wide Fund for Nature. 75 pp.
Wretenberg J, Lindstrom A, Svensson S, Tierfelder T and Part T. (2006). Population trends of farmland birds in Sweden and England: similar trends but different patterns of agricultural intensification. Journal of Applied Ecology 43: 1110–1120. https://doi.org/10.1111/j.1365-2664.2006.01216.x
Zakaria M and Rajpar M N. (2010). Density and diversity of waterbirds and terrestrial birds at Paya Indah Wetland reserve, Selangor Peninsular Malaysia. Journal of Biological Sciences 10: 658–666. https://doi.org/10.3923/jbs.2010.658.666
Zakaria M, Rajpar M N and Sajap S A. (2009). Species diversity and feeding guilds of birds in Paya Indah Wetland Reserve, Peninsular Malaysia. International Journal of Zoological Research 5(3): 86–100. https://doi.org/10.3923/ijzr.2009.86.100