Flagellin from Salmonella enteritidis Enhances the Immune Response of Fused F18 from Enterotoxigenic Escherichia coli

Main Article Content

An-Phuc Tran-Mai
Hong-Diep Thi Tran
Quoc-Gia Mai
Kien-Quang Huynh
Thuoc Linh Tran
Hieu Tran-Van


F18 plays an important role in helping Enterotoxigenic Escherichia coli (ETEC) binds to specific receptors on small intestinal enterocytes, followed by secreting of toxins causing diarrhea in post-weaning piglets (post-weaning diarrhea, PWD). However, the F18 subunit vaccine is not sufficient to stimulate an immune response that can protect weaning pigs from F18-positive ETEC (F18+ETEC). Recently, a body of evidence shows that flagellin protein (FliC) helps to increase the immunity of fused proteins. Therefore, in this study, we combined FliC with F18 to enhance the immune response of F18. The f18 gene was obtained from F18+ETEC, then was fused with the fliC gene. The expression of recombinant FliC-F18 protein was induced by Isopropyl-beta-D-Thiogalactopyranoside (IPTG). The purified protein was tested in vivo in mouse models to evaluate the immunostimulation. Results showed that the fusion of FliC and F18 protein increased the production of anti-F18 antibodies. Besides, the anti-F18 antibody in the collected antiserum specifically identified F18+ETEC. This result provides proof-of-concept for the development of subunit vaccine to prevent PWD using F18 antigen.

Article Details

How to Cite
Flagellin from Salmonella enteritidis Enhances the Immune Response of Fused F18 from Enterotoxigenic Escherichia coli. (2022). Tropical Life Sciences Research, 33(3), 19–32. https://doi.org/10.21315/tlsr2022.33.3.2
Original Article


Adar Y, Singer Y, Levi R, Tzehoval E, Perk S, Banet-Noach C, Nagar S, Arnon R and Ben-Yedidia T. (2009). A universal epitope-based influenza vaccine and its efficacy against H5N1. Vaccine 27(15): 2099–2107. https://doi.org/10.1016/j.vaccine.2009.02.011

Ausubel F M. (2003). Current protocols in molecular biology, Suppl. 64. New York: John Wiley and Sons.

Bargieri D Y, Leite J A, Lopes S C, Sbrogio-Almeida M E, Braga C J, Ferreira L C, Soares I S, Costa F T and Rodrigues M M. (2010). Immunogenic properties of a recombinant fusion protein containing the C-terminal 19 kDa of Plasmodium falciparum merozoite surface protein-1 and the innate immunity agonist FliC flagellin of Salmonella typhimurium. Vaccine 28(16): 2818–2826. https://doi.org/10.1016/j.vaccine.2010.02.004

Bargieri D Y, Rosa D S, Braga C J, Carvalho B O, Costa F T, Espíndola N M, Vaz A J, Soares I S, Ferreira L C and Rodrigues M M. (2008). New malaria vaccine candidates based on the Plasmodium vivax Merozoite Surface Protein-1 and the TLR-5 agonist Salmonella typhimurium FliC flagellin. Vaccine 26(48): 6132–6142. https://doi.org/10.1016/j.vaccine.2008.08.070

Barth S, Schwanitz A, Bauerfeind R. (2011). Polymerase chain reaction-based method for the typing of F18 fimbriae and distribution of F18 fimbrial subtypes among porcine Shiga toxin-encoding Escherichia coli in Germany. Journal of Veterinary Diagnostic Investigation 23(3): 454–464. https://doi.org/10.1177/1040638711403417

Ben-Yedidia T, Marcus H, Reisner Y and Arnon R. (1999). Intranasal administration of peptide vaccine protects human/mouse radiation chimera from influenza infection. International Immunology 11(7): 1043–1051. https://doi.org/10.1093/intimm/11.7.1043

Cuadros C, Lopez-Hernandez F J, Dominguez A L, McClelland M and Lustgarten J. (2004). Flagellin fusion proteins as adjuvants or vaccines induce specific immune responses. Infection and Immunity 72(5): 2810–2816. https://doi.org/10.1128/iai.72.5.2810-2816.2004

das Graças Luna M, Sardella F F and Ferreira L C. (2000). Salmonella flagellin fused with a linear epitope of colonization factor antigen I (CFA/I) can prime antibody responses against homologous and heterologous fimbriae of enterotoxigenic Escherichia coli. Research in Microbiology 151(7): 575–582. https://doi.org/10.1016/s0923-2508(00)00227-8

Delaney K N, Phipps J P, Johnson J B and Mizel S B. (2010). A recombinant flagellinpoxvirus fusion protein vaccine elicits complement-dependent protection against respiratory challenge with vaccinia virus in mice. Viral Immunology 23(2): 201–210. https://doi.org/10.1089/vim.2009.0107

Delisle B, Calinescu C, Mateescu M A, Fairbrother J M and Nadeau E. (2012). Oral immunization with F4 fimbriae and CpG formulated with carboxymethyl starch enhances F4-specific mucosal immune response and modulates Th1 and Th2 cytokines in weaned pigs. Journal of Pharmacy and Pharmaceutical Sciences 15(5): 642–656. https://doi.org/10.18433/j30w32

Felder C B, Vorlaender N, Gander B, Merkle H and Bertschinger H. (2000). Microencapsulated enterotoxigenic Escherichia coli and detached fimbriae for peroral vaccination of pigs. Vaccine 19(7–8): 706–715. https://doi.org/10.1016/s0264-410x(00)00264-4

Honko A N, Sriranganathan N, Lees C J and Mizel S B. (2006). Flagellin is an effective adjuvant for immunization against lethal respiratory challenge with Yersinia pestis. Infection and Immunity 74(2): 1113–1120. https://doi.org/10.1128/IAI.74.2.1113-1120.2006

Huleatt J W, Jacobs A R, Tang J, Desai P, Kopp E B, Huang Y, Song L, Nakaar V and Powell T. (2007). Vaccination with recombinant fusion proteins incorporating Tolllike receptor ligands induces rapid cellular and humoral immunity. Vaccine 25(4): 763–775. https://doi.org/10.1016/j.vaccine.2006.08.013

Huleatt J W, Nakaar V, Desai P, Huang Y, Hewitt D, Jacobs A, Tang J, McDonald W, Song L and Evans R K. (2008). Potent immunogenicity and efficacy of a universal influenza vaccine candidate comprising a recombinant fusion protein linking influenza M2e to the TLR5 ligand flagellin. Vaccine 26(2): 201–214. https://doi.org/10.1016/j.vaccine.2007.10.062

Jeon S H, Ben-Yedidia T and Arnon R. (2002). Intranasal immunization with synthetic recombinant vaccine containing multiple epitopes of influenza virus. Vaccine 20(21–22): 2772–2780. https://doi.org/10.1016/S0264-410X(02)00187-1

Levi R and Arnon R. (1996). Synthetic recombinant influenza vaccine induces efficient long-term immunity and cross-strain protection. Vaccine 14(1): 85–92. https://doi.org/10.1016/0264-410x(95)00088-i

Luise D, Lauridsen C, Bosi P and Trevisi P. (2019). Methodology and application of Escherichia coli F4 and F18 encoding infection models in post-weaning pigs. Journal of Animal Science and Biotechnology 10(1): 1–20. https://doi.org/10.1186/s40104-019-0352-7

McEwen J, Levi R, Horwitz R J and Arnon R. (1992). Synthetic recombinant vaccine expressing influenza haemagglutinin epitope in Salmonella flagellin leads to partial protection in mice. Vaccine 10(6): 405–411. https://doi.org/10.1016/0264-410x(92)90071-q

Melkebeek V, Goddeeris B M and Cox E. (2013). ETEC vaccination in pigs. Veterinary Immunology and Immunopathology 152(1–2): 37–42. https://doi.org/10.1016/j.vetimm.2012.09.024

Mizel S B and Bates J T. (2010). Flagellin as an adjuvant: cellular mechanisms and potential. The Journal of Immunology 185(10): 5677–5682. https://doi.org/10.4049/jimmunol.1002156

Mizel S B, Graff A H, Sriranganathan N, Ervin S, Lees C J, Lively M O, Hantgan R R, Thomas M J, Wood J and Bell B. (2009). Flagellin-F1-V fusion protein is an effective plague vaccine in mice and two species of nonhuman primates. Clinical and Vaccine Immunology 16(1): 21–28. https://doi.org/10.1128/CVI.00333-08

Nagy B and Fekete P Z. (1999). Enterotoxigenic Escherichia coli (ETEC) in farm animals. Veterinary Research 30(2–3): 259–284.

Pereira C M, Guth B E C, Sbrogio-Almeida M E and Castilho B A. (2001). Antibody response against Escherichia coli heat-stable enterotoxin expressed as fusions to flagellin. Microbiology 147(4): 861–867. https://doi.org/10.1099/00221287-147-4-861

Rhouma M, Fairbrother J M, Beaudry F and Letellier A. (2017). Post weaning diarrhea in pigs: risk factors and non-colistin-based control strategies. Acta Veterinaria Scandinavica 59(1): 1–19. https://doi.org/10.1186/s13028-017-0299-7

Salman H H, Irache J M and Gamazo C. (2009). Immunoadjuvant capacity of flagellin and mannosamine-coated poly (anhydride) nanoparticles in oral vaccination. Vaccine 27(35): 4784–4790. https://doi.org/10.1016/j.vaccine.2009.05.091

Song L, Zhang Y, Yun N E, Poussard A L, Smith J N, Smith J K, Borisevich V, Linde J J, Zacks M A and Li H. (2009). Superior efficacy of a recombinant flagellin: H5N1 HA globular head vaccine is determined by the placement of the globular head within flagellin. Vaccine 27(42): 5875–5884. https://doi.org/10.1016/j.vaccine.2009.07.060

Synnott A, Ohshima K, Nakai Y and Tanji Y. (2009). IgA response of BALB/c mice to orally administered Salmonella typhimurium flagellin?displaying T2 bacteriophages. Biotechnology Progress 25(2): 552–558. https://doi.org/10.1002/btpr.132

Tran B-C T, Vo-Nguyen H-V, Nguyen V-A, Tran T L and Tran-Van H. (2020). FliCdelta220-320 from Salmonella enteritidis as an adjuvant for vaccine development. SSR Institute of International Journal of Life Sciences 6(2): 2494–2501. https://doi.org/10.21276/SSR-IIJLS.2020.6.2.3

Verdonck F, Tiels P, Van Gog K, Goddeeris B, Lycke N, Clements J and Cox E. (2007). Mucosal immunization of piglets with purified F18 fimbriae does not protect against F18+ Escherichia coli infection. Veterinary Immunology and Immunopathology 120(3–4): 69–79. https://doi.org/10.1016/j.vetimm.2007.06.018

Vo-Nguyen H -V, Nguyen T -T, Mai Q -G, Tran T -T, Tran T L, Tran-Van H. (2022). Recombinase-free cloning (RFC) protocol for gene swapping. Molecular Biology Research Communications 11(1): 21–27. https://doi.org/10.22099/mbrc.2021.41923.1685