Physicochemical Properties of Honey from Contract Beekeepers, Street Vendors and Branded Honey in Sabah, Malaysia

Main Article Content

Robin Lim A H
Lum Mok Sam
Januarius Gobilik
Jamilah Lee Nyuk Choon
Kimberly Ador
Jonal Majampan
Suzan Benedick


The chemical properties of honey depend on the source of collection to packaging, but little is known about honey in Sabah. The aim of this study was to distinguish between the physicochemical properties and mineral content of 76 honey samples from local sources and supermarkets in Sabah, which were from contract beekeepers, unknown sources and branded honey. Raw honey was collected from contract beekeepers, while honey from unknown source was obtained from street vendors and wet markets, while branded honey was purchased from local supermarkets. The chemical parameters of the honey were assessed using established methods, while the mineral content of the honey was determined using inductively coupled plasma optical emission spectroscopy (ICP-OES). Significant differences were found in several parameters measured in honey from different sources, with principal component analysis (PCA) showing clear separation between the measured parameters, yielding five factors that accounted for up to 72.25% of the total explained variance. Honey from contract beekeepers showed significant differences and higher mineral content (Ca, Cu, Fe, K, Mg, Na and Zn) compared to honey from unknown source and branded honey. Potassium was the most important element in the study with an average of 2.65 g/kg and 629.4 mg/kg for sources from contract beekeepers and branded honey, respectively. The honey from the contract beekeepers was of better quality due to its high mineral content. The results suggest that honey from contract beekeepers could be a good choice when it comes to high mineral content.


Sifat kimia madu adalah bergantung kepada sumber pengumpulan hingga ke peringkat pembungkusan, namun demikian, maklumat tentang madu di Sabah kurang diketahui. Matlamat kajian ini adalah untuk membezakan antara sifat fizikokimia dan kandungan mineral bagi 76 sampel madu daripada sumber tempatan dan pasar raya di Sabah, iaitu daripada penternak lebah kontrak, sumber yang tidak diketahui dan madu berjenama. Madu mentah diperoleh daripada penternak lebah kontrak, manakala madu daripada sumber yang tidak diketahui telah diperoleh daripada peniaga jalanan dan pasar basah, manakala madu berjenama dibeli dari pasar raya tempatan. Parameter kimia madu dinilai menggunakan kaedah sedia ada yang telah ditetapkan, manakala kandungan mineral madu ditentukan menggunakan inductively coupled plasma optical emission spectroscopy (ICP-OES). Terdapat perbezaan bererti bagi beberapa parameter yang diukur dalam madu daripada sumber yang berbeza dan analisis komponen utama (PCA) menunjukkan perbezaan yang jelas antara parameter yang diukur, menghasilkan lima faktor yang menyumbang sehingga 72.25% daripada jumlah varians yang dijelaskan. Madu dari penternak lebah kontrak menunjukkan perbezaan yang ketara dan kandungan mineral yang lebih tinggi (Ca, Cu, Fe, K, Mg, Na dan Zn) berbanding madu dari sumber yang tidak diketahui dan madu berjenama. Kalium merupakan unsur terpenting dalam kajian dengan purata 2.65 g/kg dan 629.4 mg/kg masing-masing untuk sumber daripada penternak lebah kontrak dan madu berjenama. Madu dari penternak lebah kontrak adalah lebih berkualiti kerana kandungan mineralnya yang tinggi. Keputusan menunjukkan bahawa madu daripada penternak lebah kontrak boleh menjadi pilihan yang baik kerana ia mempunyai kandungan mineral yang tinggi.

Article Details

How to Cite
Physicochemical Properties of Honey from Contract Beekeepers, Street Vendors and Branded Honey in Sabah, Malaysia. (2022). Tropical Life Sciences Research, 33(3), 61–83.
Original Article


Ahmed S and Othman N H. (2013). Honey as a potential natural anticancer agent: A review of its mechanisms. Evidence-Based Complementary and Alternative Medicine 2013(c): Article ID 829070.

Ahmed S, Sulaiman S A , Baig A A, Ibrahim M, Liaqat S, Fatima S, Jabeen S, Shamim N and Othman N H. (2018). Honey as a potential natural antioxidant medicine: An insight into its molecular mechanisms of action. Oxidative Medicine and Cellular Longevity 2018: Article ID 8367846.

Al M L, Daniel D, Moise A, Bobis O, Laslo L and Bogdanov S. (2009). Physico-chemical and bioactive properties of different floral origin honeys from Romania. Food Chemistry 112(4): 863–867.

Arvanitoyannis, I S and Krystallis, A. (2005). Consumers’ beliefs, attitudes and intentions towards genetically modified foods, based on the ‘perceived safety vs. benefits’ perspective. International Journal of Food Science and Technology 40(4): 343–360.

Attia Y A, Al-Hamid A E A, Ibrahim M S, Al-Harthi M A, Bovera F and Elnaggar A S. (2014). Productive performance, biochemical and hematological traits of broiler chickens supplemented with propolis, bee pollen, and mannan oligosaccharides continuously or intermittently. Livestock Science 164(1): 87–95.

Ávila S, Lazzarotto M, Hornung P S, Teixeira G L, Ito V C, Bellettini M B, Beux M R, Beta T and Ribani R H. (2019). Influence of stingless bee genus (Scaptotrigona and Melipona) on the Mineral content, physicochemical and microbiological properties of honey. Journal of Food Science and Technology 56(10): 4742–4748.

Batt P J and Liu A. (2012). Consumer behaviour towards honey products in Western Australia. British Food Journal 114(2): 285–297.

Beretta G, Granata P, Ferrero M, Orioli M and Facino R M. (2005). Standardization of antioxidant properties of honey by a combination of spectrophotometric/fluorimetric assays and chemometrics. Analytica Chimica Acta 533(2): 185–191.

Bhandari B and Bareyre I. (2003). Estimation of crystalline phase present in the glucose crystal-solution mixture by water activity measurement. LWT - Food Science and Technology 36(7): 729–733.

Bogdanov S, Jurendic T, Sieber R and Gallmann P. (2008). Honey for nutrition and health: A review. Journal of the American College of Nutrition 27(6): 677–689.

Bogdanov S, Lüllmann C, Martin P, von der Ohe W, Russmann H, Vorwohl G, Oddo L P, Sabatini A-G, Marcazzan G L, Piro R, et al. (1999). Honey quality and international regulatory standards: Review by the International Honey Commission. Bee World 80(2): 61–69.

Boukraâ L. (2013). Honey in traditional and modern medicine. Boca Raton, FL: CRC Press.

Brš?i? K, Šugar T and Poljuha D. (2017). An empirical examination of consumer preferences for honey in Croatia. Applied Economics 49(58): 5877–5889.

Cheng M Z S Z, Ismail M, Chan K W , Ooi D J, Ismail N, Zawawi N and Esa N M. (2019). Comparison of sugar content, mineral elements and antioxidant properties of heterotrigona itama honey from suburban and forest in Malaysia. Malaysian Journal of Medicine and Health Sciences 15(SP1): 104–112.

Cheung Y, Meenu M, Yu X and Xu B. (2019). Phenolic acids and flavonoids profiles of commercial honey from different floral sources and geographic sources. International Journal of Food Properties 22(1): 290–308.

Chua L S, Abdul-Rahaman N-L, Sarmidi M R and Aziz R. (2012). Multi-elemental composition and physical properties of honey samples from Malaysia. Food Chemistry 135(3): 880–887.

Chua L S and Adnan N A. (2014). Biochemical and nutritional components of selected 2014. Scientiarum Polonorum ACTA 13(2): 169–179.

Cimpoiu C, Hosu A, Miclaus V and Puscas A. (2013). Determination of the floral origin of some romanian honeys on the basis of physical and biochemical properties. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy 100: 149–154.

Connolly C N. (2017). Nerve agents in honey. Science 358(6359): 38–39.

Cotte J F, Casabianca H, Giroud B, Albert M., Lheritier J and Grenier-Loustalot M F. (2004). Characterization of honey amino acid profiles using high-pressure liquid chromatography to control authenticity. Analytical and Bioanalytical Chemistry 378(5): 1342–1350.

da Silva P M, Gauche C, Gonzaga L V, Costa A C O and Fett R. (2016). Honey: chemical composition, stability and authenticity. Food Chemistry 196: 309–323.

Elamine Y, Anjos O, Estevinho L M, Lyoussi B, Aazza S and Miguel M G. (2020). Effect of extreme heat processing on the moroccan zantaz’ honey antioxidant activities. Journal of Food Science and Technology 57(9): 3323–3333.

El Sohaimy S A, Masry S H D and Shehata M G. (2015). Physicochemical characteristics of honey from different origins. Annals of Agricultural Sciences 60(2): 279–287.

Escuredo O, Dobre I, Fernández-González M and Seijo M C. (2014). Contribution of botanical origin and sugar composition of honeys on the crystallization phenomenon. Food Chemistry 149: 84–90.

FAO and WHO (2019). Codex Alimentarius: Standard for honey. CXS 12-1981.

Ferreira I C F R, Aires E, Barreira J C M and Estevinho L M. (2009). Antioxidant activity of portuguese honey samples : Different contributions of the entire honey and phenolic extract. Food Chemistry 114(4): 1438–1443.

Food Act 1983 (Act 281) and Regulations. (2019). Petaling Jaya: International Law Book Series.

Idris Y M A, Mariod A A and Hamad S I. (2011). Physicochemical properties, phenolic contents and antioxidant activity of sudanese honey. International Journal of Food Properties 14(2): 450–458.

Joveti? M, Trifkovi? M, Stankovi? D, Manojlovi? D and Milojkovi?-Opsenica D. (2017). Mineral content as a tool for the assessment of honey authenticity. Journal of AOAC International 100(4): 862–870.

Kavanagh S, Gunnoo J, Passos T M, Stout J C and White B. (2019). Physicochemical properties and phenolic content of honey from different floral origins and from rural versus urban landscapes. Food Chemistry 272: 66–75.

Kek S P, Chin N L, Tan S W, Yusof Y A and Chua L S. (2017). Classification of honey from its bee origin via chemical profiles and mineral content. Food Analytical Methods 10(1): 19–30.

Kek S P, Chin N L, Yusof Y A, Tan S W and Chua L S. (2017). Classification of entomological origin of honey based on its physicochemical and antioxidant properties. International Journal of Food Properties 20(3): S2723–S2738.

Khalil M I, Sulaiman S A and Gan S H. (2010). High 5-hydroxymethylfurfural concentrations are found in Malaysian Honey samples stored for more than one year. Food and Chemical Toxicology 48(8–9): 2388–2392.

Koeniger N, Koeniger G and Tingek S. (2010). Honey bees of Borneo: Exploring the centre of apis diversity. Sabah, Malaysia: Natural History Publications (Borneo) Sdn. Bhd.

Lan J, Ding G, Ma W, Jiang Y and Huang J. (2021). Pollen source affects development and behavioral preferences in honey bees. Insects 12(2): 1–9.

Ma T, Zhao H, Liu C, Zhu M, Gao H, Cheng N and Cao W. (2019). Discrimination of natural mature acacia honey based on multi-physicochemical parameters combined with chemometric analysis. Molecules 24(14): 16–19.

Manzanares A B, García Z H, Galdón B R, Rodríguez E R and Romero C D. (2011). Differentiation of blossom and honeydew honeys using multivariate analysis on the physicochemical parameters and sugar composition. Food Chemistry 126(2): 664–672.

McDonald C M, Keeling S E, Brewer M J and Hathaway, S C. (2018). Using chemical and dna marker analysis to authenticate a high-value food, manuka honey. npj Science of Food 2(1): 1–14.

Moloudian H, Abbasian S, Nassiri-Koopaei N, Tahmasbi M R, Afzal G A, Ahosseini M S, Yunesian M and Khoshayand M R. (2018). Characterization and classification of iranian honey based on physicochemical properties and antioxidant activities, with chemometrics approach. Iranian Journal of Pharmaceutical Research 17(2): 708–725.

Moniruzzaman M, Chowdhury M A Z, Rahman M A, Sulaiman S A and Gan S H. (2014). Determination of mineral, trace element, and pesticide levels in honey samples originating from different regions of Malaysia compared to manuka honey. BioMed Research International 2014: 4–7.

Moniruzzaman M, Khalil M I, Sulaiman S A and Gan S H. (2013). Physicochemical and antioxidant properties of Malaysian honeys produced by Apis cerana, Apis dorsata and Apis mellifera. BMC Complementary and Alternative Medicine 13: 43.

Önür I, Misra N N, Barba F J, Putnik P, Lorenzo J M, Gökmen V and Alpas H. (2018). Effects of ultrasound and high pressure on physicochemical properties and HMF formation in Turkish honey types. Journal of Food Engineering 219: 129–136.

Pasupuleti V R, Sammugam L, Ramesh N and Gan S H. (2017). Honey, propolis, and royal jelly: A comprehensive review of their biological actions and health benefits. Oxidative Medicine and Cellular Longevity 2017: 1259510.

Patrignani M, Fagúndez G A, Tananaki C, Thrasyvoulou A and Lupano C E. (2018). Volatile compounds of Argentinean honeys: Correlation with floral and geographical origin. Food Chemistry 246: 32–40.

Pita-Calvo C and Vázquez M. (2017). Differences between Honeydew and Blossom honeys: A review. Trends in Food Science and Technology 59: 79–87.

Rodríguez-Flores M S, Escuredo O, Míguez M and Seijo M C. (2019). Differentiation of oak honeydew and chestnut honeys from the same geographical origin using chemometric methods. Food Chemistry 297: 124979.

Saka? M B, Jovanov P T, Mari? A Z, Pezo L L, Kevrešan Z S, Novakovi? A R and Nedeljkovi? N M. (2019). Physicochemical properties and mineral content of honey samples from Vojvodina (Republic of Serbia). Food Chemistry 276: 15–21.

Saxena S, Gautam S and Sharma A. (2010). Physical, biochemical and antioxidant properties of some Indian honeys. Food Chemistry 118(2): 391–397.

Selvaraju K, Vikram P, Soon J M, Krishnan K T and Mohammed A. (2019). Melissopalynological, physicochemical and antioxidant properties of honey from West Coast of Malaysia. Journal of Food Science and Technology 56(5): 2508–2521.

Seraglio S K T, Silva B, Bergamo G, Brugnerotto P, Gonzaga L V, Fett R and Costa A C O. (2019). An overview of physicochemical characteristics and health-promoting properties of honeydew honey. Food Research International 119: 44–66.

Shamsudin S, Selamat J, Sanny M, Razak S-B A, Jambari N N, Mian Z and Khatib A. (2019). Influence of origins and bee species on physicochemical, antioxidant properties and botanical discrimination of stingless bee honey. International Journal of Food Properties 22(1): 238–263.

Singleton V L, Orthofer R and Lamuela-Raventós R M. (1999). [14] Analysis of total phenols and other oxidation substrates and antioxidants by means of folin-ciocalteu reagent. Methods in Enzymology 299: 152–178.

Solayman M, Islam M A, Paul S, Ali Y, Khalil M I, Alam N and Gan S H. (2016). Physicochemical properties, minerals, trace elements, and heavy metals in honey of different origins: A comprehensive review. Comprehensive Reviews in Food Science and Food Safety 15(1): 219–233.

Vasi? V, Gaši? U, Stankovi? D, Luši? D, Vuki?-Luši? D, Milojkovi?-Opsenica D, Teši? Ž and Trifkovi? J. (2019). Towards better quality criteria of European honeydew honey: Phenolic profile and antioxidant capacity. Food Chemistry 274: 629–641.

Wen Y-Q, Zhang J, Li Y, Chen L, Zhao W, Zhou J and Jin Y. (2017). Characterization of Chinese unifloral honeys based on proline and phenolic content as markers of botanical origin, using multivariate analysis. Molecules 22(5): 735.

White J W. (1984). Instrumental color classification of honey: collaborative study. Journal of Association of Official Analytical Chemists 67(6): 1129–1131.

Wolff D. (2006). Nectar sugar composition and volumes of 47 species of gentianales from a Southern Ecuadorian Montane Forest. Annals of Botany 97(5): 767–777.

Wu J, Duan Y, Gao Z, Yang X, Zhao D, Gao J, Han W, Li G and Wang S. (2020). Quality comparison of multifloral honeys produced by Apis cerana cerana, Apis dorsata and Lepidotrigona flavibasis. Lwt 134: 110225.

Wu L, Du B, Heyden Y V, Chen L, Zhao L, Wang M and Xue X. (2017). Recent Advancements in detecting sugar-based adulterants in honey –A challenge. TrAC - Trends in Analytical Chemistry 86: 25–38.

Zafarnejad K, Afzali N and Rajabzadeh M. (2017). Effect of Bee glue on growth performance and immune response of broiler chickens. Journal of Applied Animal Research 45(1): 280–284.

Zhang F P, Yang Q-Y and Zhang S B. (2016). Dual effect of phenolic nectar on three floral visitors of Elsholtzia rugulosa (Lamiaceae) in SW China. PLoS ONE 11(4): e0154381.