The Survival Rate from Splitting Clutch Design Method for Green Turtle’s Relocated Nest in Penang Island, Malaysia
Main Article Content
Abstract
Ten nests were collected from Kerachut and Teluk Kampi, Penang Island between 2 August 2009 and 9 December 2009, and each one nest was split into three small clutch sizes for incubation at three nesting depths (45 cm, 55 cm and 65 cm), with a total of 30 modified nests for this experiment. Three important objectives were formulated; to observe on the survival hatchings among the three nesting depths, to study on the effects of sand temperature on incubation period among the three nesting depths, and to investigate the influence of sand temperature on hatchling’s morphology. Main result shows that the mean survival of the hatchlings was 25.40% at 45 cm nesting depth, followed by mean 17.60% at 55 cm nesting depth, and lastly, the mean was 21.50% at 65 cm nesting depth. Overall, there are 56.63% survival hatchlings, 10.97% dead hatchlings and 32.40% unhatched eggs were produced. The incubation period was also found to be significantly correlated with sand temperature, p > 0.001, and nesting depth, p < 0.001. The hatchling’s length and weight varies is sizes across the nesting depths, p < 0.001. However, the small difference in hatchling sizes per nesting depths are not strong enough to prove the significant correlation with sand temperature, p > 0.05. This article provides a basic knowledge from the splitting clutch design method. A sum of 50%–60% survivals hatchlings produced were incubating under small range of clutch sizes, 29 to 49 eggs. This article provides basic result on the survival hatchlings, eggs survivorship, incubation period, temperature, hatchling’s morphology and discussion on implication of this method on conservation in Malaysia.
Terdapat 10 sarang penyu yang dikutip di pantai Kerachut dan Teluk Kampi, di antara 2 Ogos 2009 hingga 9 Disember 2009, dan setiap satu sarang dibahagikan kepada tiga bahagian kecil yang sama rata untuk proses pengeraman pada tiga kedalaman sarang yang berbeza (45 cm, 55 cm dan 65 cm). Jumlah keseluruhan sarang yang diubahsuai untuk menjalankan eksperimen ini ialah sebanyak 30 sarang. Tiga objektif utama telah diketengahkan; dimana penelitian ke atas anak penyu menetas di tiga kedalaman sarang yang berbeza, untuk mengkaji kesan suhu sarang ke atas masa pengeraman di antara tiga kedalaman sarang yang berbeza, dan kajian pengaruh suhu sarang ke atas morfologi anak penyu yang menetas. Keputusan utama menunjukkan min anak penyu menetas adalah sebanyak 25.40% di kedalaman sarang 45 cm, diikuti min 17.60% di kedalaman sarang 55 cm, dan yang terakhir, min 21.50% di kedalaman sarang 65 cm. Secara keseluruhannya, terdapat 56.63% anak penyu menetas, 10.97% anak penyu mati dan 32.40% telur yang tidak menetas telah dihasilkan. Didapati bahawa tempoh penetasan mempunyai signifikasi korelasi ke atas suhu sarang, p > 0.001 dan kedalaman sarang, p > 0.001. Sementara itu, panjang anak penyu dan berat anak penyu didapati berbeza saiz mengikut kedalaman sarang, p < 0.001. Namun begitu, perbezaan saiz anak penyu yang tidak begitu ketara yang dihasilkan mengikut kedalaman sarang tidak memberi kesan ke atas signifikasi korelasi dengan suhu sarang, p > 0.05. Kajian ini memberikan maklumat asas keputusan daripada kaedah pengasingan telur. Jumlah keseluruhan menunjukkan 50%–60% anak penyu menetas berjaya dihasilkan, walaupun dieramkan dalam jumlah kumpulan telur yang kecil, iaitu sebanyak 29–49 telur. Artikel ini adalah penting untuk memberikan maklumat asas mengenai anak penyu menetas, survival telur, tempoh penetasan, suhu, morfologi anak penyu dan perbincangan implikasi kaedah ini kepada konservasi di Malaysia.
Article Details
This work is licensed under a Creative Commons Attribution 4.0 International License.
References
Abdul-Mutalib A H and Fadzly N. (2015). Assessing hatchery management as a conservation tool for sea turtles: A case study in Setiu, Terengganu. Ocean and Coastal Management 113: 47–53. https://doi.org/10.1016/j.ocecoaman.2015.05.010
Booth D T. (1998). Effects of incubation temperature on the energetic embryonic development and hatchling morphology in the Brisbane River Turtle, Emydura signata. Journal of Comparative Psychology B 168: 399–404. https://doi.org/10.1007/s003600050159
Booth D T. (2006). Influence of incubation temperature on hatchling phenotype in reptiles. Physiological and Biochemical Zoology 79: 274–281. https://doi.org/10.1086/499988
Booth D T and Evans A. (2011). Warm water and cool nests are best: How global warming might influence hatchling green turtle swimming performance. PLoS ONE 6(8): 1–7. https://doi.org/10.1371/journal.pone.0023162
Booth D T and Freeman C. (2006). Sand and nest temperatures and an estimate of hatchling sex ratio from the Heron Island Green Turtle (Chelonia mydas) rookery, Southern Great Barrier Reef. Coral Reefs 25: 629–633. https://doi.org/10.1007/s00338-006-0135-4
Brown L and Macdonald D W. (1995). Predation on green turtle, Chelonia mydas nests by wild canids at Akyatan beach, Turkey. Biological Conservation 71: 55–60. https://doi.org/10.1016/0006-3207(94)00020-Q
Bustard R H and Greenham P. (1968). Physical and chemical factors affecting hatching in the Green Sea Turtle, Chelonia mydas (L.). Ecology 49: 269–276. https://doi.org/10.2307/1934455
Carr A and Hirth H. (1961). Social facilitation in green turtle siblings. Animal Behavior 9: 68–70. https://doi.org/10.1016/0003-3472(61)90051-3
Chan E H. (2010). A 16-year record of Green Turtle and Hawksbill Turtle nesting activity at Chagar Hutang Turtle Santuary, Redang Island, Malaysia. Indian Ocean Turtle Newsletter 12(1): 1–5.
Chan E H. (2013). A report on the first 16 years of a long-term marine turtle conservation project in Malaysia. Asian Journal of Conservation Biology 2(2): 129–135.
Chen T H and Cheng I J. (1995). Breeding biology of the green turtle, Chelonia mydas (Reptilia: Cheloniidae) on Wan-An Island, Peng-Hu Archipelago, Taiwan. I. Nesting ecology. Marine Biology 124: 9–15. https://doi.org/10.1007/BF00349141
Cheng I J, Huang C T, Hung P Y, Ke B Z, Kuo C W and Fong C. (2009). A ten year monitoring of the nesting ecology of the green turtle, Chelonia mydas, on Lanyu Island, Taiwan. Zoological Studies 48(1): 83–94.
Cheng I J, Bentivegna F and Hochscheid S. (2013). The behavioural choices of green turtles nesting at two environmentally different islands in Taiwan. Journal of Experimental Marine Biology and Ecology 440: 141–148. https://doi.org/10.1016/j.jembe.2012.12.002
Chu C T, Booth D T and Limpus C J. (2008). Estimating the sex ratio of loggerhead turtle hatchling at Mon Repos rookery (Australia) from nest temperatures. Australian Journal of Zoology 56: 57–64. https://doi.org/10.1071/ZO08004
Durmus S H, Ilgaz C, Özdemir A, and Yerli S V. (2011). Nesting activity of loggerhead turtles (Caretta caretta) at Göksu Delta, Turkey during 2004 and 2008 nesting seasons. Ecologia Balkanica 3(1): 95–106.
Fowler L E. (1979). Hatching success and nests predation in the Green Sea Turtle, Chelonia mydas, at Tortuguero, Coasta Rica. Ecological Society of America 60(5): 946–955. https://doi.org/10.2307/1936863
Glen F, Broderick A C, Godley B J, and Hays G C. (2005). Pattern in emergence of Green (Chelonia mydas) and Loggerhead (Caretta caretta) turtle hatchlings from their nests. Marine Biology 146: 1039–1049. https://doi.org/10.1007/s00227-004-1492-6
Gomuttapong S, Klom-In W, Kitana J, Pariyanonth P, Thirakhupt K, and Kitana N. (2013). Green turtle, Chelonia mydas, nesting and temperature profile of the nesting beach at Huyong Island, the Similan Islands in Andaman Sea. Natural Resources 4: 357–361. https://doi.org/10.4236/nr.2013.44043
Hays C G, Broderick A C, Glen F, Godley BJ, Houghton JDR, and Metcalfe JD. (2002). Water temperature and inter-nesting intervals for Loggerhead (Caretta caretta) and Green (Chelonia mydas) Sea Turtles. Journal of Thermal Biology 27: 429–432. https://doi.org/10.1016/S0306-4565(02)00012-8
Hays G C, Fossette S, Katselidis KA, Mariani P, and Schofield G. (2010). Ontogenetic development of migration: Lagrangian drift trajectories suggest a new paradigm for sea turtles. Journal of the Royal Society Interface 7: 1319?1327. https://doi.org/10.1098/rsif.2010.0009
Hitchins P M, Bourquin O, and Hitchins S. (2004). Nesting success of hawksbill turtles (Eretmochelys imbricata) on Cousine Island, Seychelles. Journal of Zoology 264: 383–389. https://doi.org/10.1017/S0952836904005904
Jabatan Perikanan Malaysia. (2016). Pelan tindakan pengurusan dan pemuliharaan penyu kebangsaan, Malaysia. Putrajaya: Kementerian Pertanian dan Industri Asas Tani Malaysia, 70.
López-Castro M C, Carmona R and Nichols W J. (2004). Nesting characteristics of the Olive Ridley Turtle (Lepidochelys olivacea) in Cabo Pulmo, Southern Baja California. Marine Biology 145: 811–820.
Madden D, Ballestero J, Calvo C, Carlson R, Christians E and Madden E. (2008). Sea turtle nesting as a process influencing a sandy beach ecosystem. Biotropica 40: 758–765. https://doi.org/10.1111/j.1744-7429.2008.00435.x
Martins S, Abella E, López O, Ikaran M, Mareo A and López.Jurado L F. (2007). Influence of nest depth on incubation and emergence of loggerhead turtles. Paper presented at the 27th Annual Symposium on Sea Turtle Biology and Conservalion, Myrtle Beach, South Carolina.
Maulany R I, Booth D T, and Baxter G S. (2012). Emergence success and sex ratio of natural and relocated nests of olive ridley turtles from Alas Purwo National Park, East Java, Indonesia. Copeia 2012(4): 738–747. https://doi.org/10.1643/CH-12-088
Mortimer J A. (1999). Reducing threats to eggs and hatchlings: hatcheries. In K L Eckert, Bjorndal K A, Abreu-Grobois F A and Donnelly M. (eds.). Research and management techniques for the conservation of sea turtles. IUCN/SSC Marine Turtle Specialist Group Publication, No. 4, 1–15.
Mortimer J A, Zaid A, Safee K, Dzuhari M, Sharma D and Aikanathan S. (1994). In B A Schroeder and B E Witherington (eds.). Evaluation of the practice of splitting sea turtle egg clutches under hatchery conditions in Malaysia. Proceedings of the 13th Annual Symposium on Sea Turtle Biology and Conservation. NOAA Technical Memorandum NMFS-SEFSC-341. U.S. Department of Commerce,118–120.
Najwa-Sawawi S, Azman S M, Rusli M U, Ahmad A, Ahmad M F and Fadzly, N (in press). How deep is deep enough? Analysis of sea turtle eggs nests relocation procedure at Chagar Hutang Turtle Sanctuary. Saudi Journal of Biological Sciences.
Olgun K, Bozkurt E, Ceylan S, Tural M, Özcan S, Karasüleymano?lu K S and Gero?lu Y. (2016). Nesting activity of sea turtles, Caretta caretta (Linnaeus, 1758) and Chelonia mydas (Linnaeus, 1758) (Reptilia, Cheloniidae), at Patara Beach (Antalya, Turkey) over four nesting seasons. Turkish Journal of Zoology 40: 215–222. https://doi.org/10.3906/zoo-1505-8
Pallant J. (2002). SPSS survival manual: A step by step guide to data analysis using SPSS for windows (Version 12). Sydney: Allen & Unwin, 201.
Peterson C, Fegley S, Voss C, Marschhauser S and VanDusen B. (2013). Conservation implications of density-dependent predation by ghost crabs on hatchling sea turtles running the gauntlet to the sea. Marine Biology 160: 629–640. https://doi.org/10.1007/s00227-012-2118-z
Portugal S J, Hubel T Y, Fritz J, Heese S, Trobe D, Voelkl B, Hailes S, Wilson A M and Usherwood J R. (2014). Upwash exploitation and downwash avoidance by flap phasing in ibis formation flight. Nature 505: 399–402. https://doi.org/10.1038/nature12939
Reboul I, Booth D, and Rusli U. (2021). Artificial and natural shade: Implications for green turtle (Chelonia mydas) rookery management. Ocean and Coastal Management 204: 105521. https://doi.org/10.1016/j.ocecoaman.2021.105521
Rusli M U, Booth D T and Joseph J. (2016). Synchronous activity lowers the energetic cost of nest escape for sea turtle hatchlings. Journal of Experimental Biology 219: 1505–1513. https://doi.org/10.1242/jeb.134742
Sarahaizad M S, Yobe M and Shahrul-Anuar M S. (2012). The distribution and conservation status of green turtles (Chelonia mydas) and olive ridley turtles (Lepidochelys olivacea) on Pulau Pinang beaches (Malaysia), 1995–2009. Tropical Life Sciences Research 23(1): 63–76.
Sarahaizad M S and Shahrul-Anuar M S. (2014). Hatching success and nesting depth of Chelonia mydas (Family: Cheloniidae) in eggs relocation programme at Penang Island, Peninsular Malaysia. Malaysian Applied Biology Journal 43(2): 59–70.
Sarahaizad M S, Shahrul-Anuar M S and Chowdhury A J K. (2017). Splitting the eggs methods: Comparison of egg survivorship between styrofoam and open area nests for Penang Island turtle. Malaysian Applied Biology 46(2): 77–86.
Sarahaizad M S, Shahrul-Anuar M S and Jalal K C A. (2018). Assessing nesting status of green turtles, Chelonia Mydas in Perak, Malaysia. Tropical Life Sciences Research, 29(1): 155-171. https://doi.org/10.21315/tlsr2018.29.1.11
Spencer R J and Janzen F J. (2011). Hatching behavior in turtles. Integrative and Comparative Biology 51: 100–110. https://doi.org/10.1093/icb/icr045
Spotila J A. (2004). Sea turtles: A complete guide to their biology, behavior, and conservation. Baltimore: Johns Hopkins University Press.
Tucker J K, Paukstis G L and Janzen F J. (2008). Does predator swamping promote synchronous emergence of turtle hatchling among nests? Behavioral Ecology 19: 35–40. https://doi.org/10.1093/beheco/arm097
Van De Merwe J P, Ibrahim K and Whittier J M. (2006). Effects of nest depth, shading, and metabolic heating on nest temperatures in sea turtle hatcheries. Chelonian Conservation and Biology 5(2): 210–215. https://doi.org/10.2744/1071-8443(2006)5[210:EONDSA]2.0.CO;2
Wood A, Booth D T, and Limpus C J. (2014). Sun exposure, nest temperature and loggerhead turtle hatchlings: implications for beach shading management strategies at sea turtle rookeries. Journal of Experimental Marine Biology and Ecology 451: 105–114. https://doi.org/10.1016/j.jembe.2013.11.005
Yalcin-Ozdilek, S and Yerli, S V. (2006). Green turtle (Chelonia mydas) nesting and habitat threats at Samandag beach, Turkey. Chelonian Conservation and Biology 5(2): 302–305. https://doi.org/10.2744/1071-8443(2006)5[302:GTCMNA]2.0.CO;2
Zare R, Vaghefi M E and Kamel S J. (2012). Nest location and clutch success of the hawksbill sea turtle (Eretmochelys imbricata) at Shivdar Island, Iran. Chelonian Conservation and Biology 11: 229–234. https://doi.org/10.2744/CCB-1003.1