Uncovering the Microbiota of Bagworm Metisa plana (Lepidoptera: Psychidae) in Oil Palm Plantations in Malaysia

Main Article Content

Andrew Ting
Cik Mohd Rizuan Zainal Abidin
Noor Hisham Hamid
Ghows Azzam
Hasber Salim


Bagworm Metisa plana is one of the major pests in Malaysia’s oil palm plantation, with infestation resulting in huge economical loss. Currently, the microbial profile of the bagworm has yet to be study. Understanding the biology of the pest such as the bacterial community is crucial as bacteria associated with insects often provide benefits to the insect, giving the insect host a better chance of survival. Here, 16S amplicon sequencing was used to identify the bacteria community of M. plana. Additionally, two comparisons were made, the bacterial communities between two larval stages (early instar stage and late instar stage) from outbreak area; the bacterial communities of late instar stage larvae from non-outbreak between outbreak areas. From this study, it was found that the bacterial community of M. plana consisted of Proteobacteria, Actinobacteria, Bacterioidetes, Firmicutes and other minor phyla, with Proteobacteria being the most dominant phylum. Furthermore, bacterial genera of M. plana consisted of Pantoea, Curtobacterium, Pseudomonas, Massilia and other minor genera, with Pantoea being the most dominant. It was also found that the alpha and beta diversity in both comparisons were not significantly different. We present our data as a first insight towards the bacterial community of M. plana, paving a way towards understanding the biology of the bagworm M. plana.

Article Details

How to Cite
Andrew Ting, Cik Mohd Rizuan Zainal Abidin, Noor Hisham Hamid, Ghows Azzam, & Hasber Salim. (2023). Uncovering the Microbiota of Bagworm Metisa plana (Lepidoptera: Psychidae) in Oil Palm Plantations in Malaysia. Tropical Life Sciences Research, 34(1), 185–218. https://doi.org/10.21315/tlsr2023.34.1.11
Original Article


Ahmad Ali S R, Kamarudin N, Moslim R and Wahid M B. (2011). Bioprotection in oil palm. In Wahid M B, Choo Y M and Chan K W (eds.), Further advances in oil palm research. Selangor: Malaysian Palm Oil Board, 358–406.

Akhoundi M, Bakhtiari R, Guillard T, Baghaei A, Tolouei R, Sereno D, Toubas D, Depaquit J and Abyaneh M R. (2012). Diversity of the bacterial and fungal microflora from the midgut and cuticle of phlebotomine sand flies collected in North-Western Iran. PLoS ONE 7(11): e50259. https://doi.org/10.1371/journal.pone.0050259

Aly N Y A, Salmeen H N, Lila R A A and Nagaraja P A. (2008). Pantoea agglomerans bloodstream infection in preterm neonates. Medical Principles and Practice 17(6): 500–503. https://doi.org/10.1159/000151575

Asis C A and Adachi K. (2004). Isolation of endophytic diazotroph pantoea agglomerans and nondiazotroph enterobacter asburiae from sweetpotato stem in Japan. Letters in Applied Microbiology 38(1): 19–23. https://doi.org/10.1046/j.1472-765X.2003.01434.x

Azad H R, Holmes G J and Cooksey D A. (2000). A new leaf blotch disease of sudangrass caused by Pantoea ananas and Pantoea stewartii. Plant Disease 84(9): 973–979. https://doi.org/10.1094/PDIS.2000.84.9.973

Behrendt U, Ulrich A, Schumann P, Naumann D and Suzuki K. (2002). Diversity of grass- associated microbacteriaceae isolated from the phyllosphere and litter layer after mulching the sward; Polyphasic characterization of Subtercola pratensis sp. nov., Curtobacterium herbarum sp. nov. and Plantibacter flavus gen. nov., sp. nov. International Journal of Systematic and Evolutionary Microbiology 52(5): 1441–1454. https://doi.org/10.1099/00207713-52-5-1441

Bulgari D, Casati P, Brusetti L, Quaglino F, Brasca M, Daffonchio D and Bianco P A. (2009). Endophytic bacterial diversity in grapevine (Vitis vinifera L.) leaves described by 16S RRNA Gene sequence analysis and length heterogeneity-PCR. The Journal of Microbiology 47(4): 393–401. https://doi.org/10.1007/s12275-009-0082-1

Bulgari D, Casati P, Crepaldi P, Daffonchio D, Quaglino F, Brusetti L and Bianco P A. (2011). Restructuring of endophytic bacterial communities in grapevine yellows-diseased and recovered Vitis vinifera L. plants. Applied and Environmental Microbiology 77(14): 5018–5022. https://doi.org/10.1128/AEM.00051-11

Charles J-F, Nielsen-Leroux C and A Delkcluse A. (1996). Bacillus Sphaericus toxins: Molecular biology and mode of action. Annual Review of Entomology 41: 451–472. https://doi.org/10.1146/annurev.en.41.010196.002315

Chase A B, Arevalo P, Polz M F, Berlemont R and Martiny J B H. (2016). Evidence for ecological flexibility in the cosmopolitan genus Curtobacterium. Frontiers in Microbiology 7(November): 1874. https://doi.org/10.3389/fmicb.2016.01874

Chaturvedi S, Rego A, Lucas L K and Gompert Z. (2017). Sources of variation in the gut microbial community of Lycaeides melissa caterpillars. Scientific Reports 7(1): 11335. https://doi.org/10.1038/s41598-017-11781-1

Chen B, Du K, Sun C, Vimalanathan A, Liang X, Li Y, Wang B, Lu X, Li L and Shao Y. (2018). Gut bacterial and fungal communities of the domesticated silkworm (Bombyx mori) and wild mulberry-feeding relatives. The ISME Journal 12(9): 2252–2262. https://doi.org/10.1038/s41396-018-0174-1

Chen B, Teh B-S, Sun C, Hu S, Lu X, Boland W and Shao Y. (2016). Biodiversity and activity of the gut microbiota across the life history of the insect herbivore Spodoptera littoralis. Scientific Reports 6(1): 29505. https://doi.org/10.1038/srep29505

Cheong Y L and Tey C C. (2012). Understanding pest biology and behaviour for effective control of oil palm bagworms. The Planter, Kuala Lumpur 88(1039): 699–715.

De Smet J, Wynants E, Cos P and Van Campenhout L. (2018). Microbial community dynamics during rearing of black soldier fly larvae (Hermetia illucens) and impact on exploitation potential. Applied and Environmental Microbiology 84(9): e02722-17. https://doi.org/10.1128/AEM.02722

Douglas A E. (2015). Multiorganismal insects: Diversity and function of resident microorganisms. Annual Review of Entomology 60: 17–34. https://doi.org/10.1146/annurev-ento-010814-020822

Federici B A. (2005). Insecticidal bacteria: An overwhelming success for invertebrate pathology. Journal of Invertebrate Pathology 89: 30–38. https://doi.org/10.1016/j.jip.2005.06.007

Federici B A. (2007). Bacteria as biological control agents for insects: Economics, engineering and environmental safety. In Vurro M and Gressel J (eds.), Novel iotechnologies for biocontrol agent enhancement and management. Dordrecht: Springer Netherlands, 25–51. https://doi.org/10.1007/978-1-4020-5799-1_2.

Finn R D, Bateman A, Clements J, Coggill P, Eberhardt R Y, Eddy S R, Heger A, Hetherington K, Holm L, Mistry J, et al. (2014). Pfam: The protein families database. Nucleic Acids Research 42(D1): D222–D230. https://doi.org/10.1093/nar/gkt1223

Gomes S I F, Kielak A M, S. Hannula E, Heinen R, Jongen R, Keesmaat I, De Long J R and Bezemer T M. (2020). Microbiomes of a specialist caterpillar are consistent across different habitats but also resemble the local soil microbial communities. Animal Microbiome 2(1): 37. https://doi.org/10.1186/s42523-020-00055-3

González-Serrano F, Pérez-Cobas A E, Rosas T, Baixeras J, Latorre A and Moya A. (2020). The gut microbiota composition of the moth Brithys crini reflects insect metamorphosis. Microbial Ecology 79(4): 960–970. https://doi.org/10.1007/s00248-019-01460-1

Hammer T J, Janzen D H, Hallwachs W, Jaffe S P and Fierer N. (2017). Caterpillars lack a resident gut microbiome. Proceedings of the National Academy of Sciences of the United States of America 114(36): 9641–9646. https://doi.org/10.1073/pnas.1707186114

Hammer T J, McMillan W O and Fierer N. (2014). Metamorphosis of a butterfly-associated bacterial community. PLoS ONE 9(1): e86995. https://doi.org/10.1371/journal.pone.0086995

Hannula S E, Zhu F, Heinen R and Bezemer T M. (2019). Foliar-feeding insects acquire microbiomes from the soil rather than the host plant. Nature Communications 10(1): 1254. https://doi.org/10.1038/s41467-019-09284-w

Hansen A K, Pers D and Russell J A. (2020). Symbiotic solutions to nitrogen limitation and amino acid imbalance in insect diets. In Oliver K M and Russell J A (eds.), Advances in Insect Physiology, Volume 58, Academic Press Inc, 161–205. https://doi.org/10.1016/bs.aiip.2020.03.001

Jones A G, Mason C J, Felton G W and Hoover K. (2019). Host plant and population source drive diversity of microbial gut communities in two polyphagous insects. Scientific Reports 9(1): 2792. https://doi.org/10.1038/s41598-019-39163-9

Kamarudin N, Ahmad Ali S R, Mohd Masri M M, Ahmad M N, Che Manan C A H and Kamarudin N. (2017). Controlling Metisa plana Walker (Lepidoptera: Psychidae) outbreak using Bacillus thuringiensis at an oil palm plantation in Slim River, Perak, Malaysia. Journal of Oil Palm Research 29(1): 47–54. https://doi.org/10.21894/jopr.2017.2901.05

Kamarudin N and Wahid M B. (2007). Status of common oil palm insect pests in relation to technology adoption. The Planter 83(975): 375–85.

Köhl J, Kolnaar R and Ravensberg W J. (2019). Mode of action of microbial biological control agents against plant diseases: Relevance beyond efficacy. Frontiers in Plant Science 10(July): 845. https://doi.org/10.3389/fpls.2019.00845

Kok C C, Eng O K, Razak A R and Arshad A M. (2011). Microstructure and life cycle of Metisa plana Walker (Lepidoptera: Psychidae). Journal of Sustainability Science and Management 6(1): 51–59.

Komagata K, Iizuka H and Takahashi M. (1965). Taxonomic evaluation of nitrate respiration and carbohydrate fermentation in aerobic bacteria. The Journal of General and Applied Microbiology 11(3): 191–201. https://doi.org/10.2323/jgam.11.191

Kozich J J, Westcott S L, Baxter N T, Highlander S K and Schloss P D. (2013). Development of a dual-index sequencing strategy and curation pipeline for analyzing amplicon sequence data on the MiSeq illumina sequencing platform. Applied and Environmental Microbiology 79(17): 5112–5120. https://doi.org/10.1128/AEM.01043-13

Lacava P T, Li W, Araújo W L, Azevedo J L and Hartung J S. (2007). The endophyte Curtobacterium flaccumfaciens reduces symptoms caused by Xylella fastidiosa in Catharanthus roseus. Journal of Microbiology (Seoul, Korea) 45(5): 388–393.

Maccollom G B, Lauzon C R, Sjogren R E, Meyer W L and Olday F. (2009). Association and attraction of blueberry maggot fly Curran (Diptera: Tephritidae) to Pantoea (Enterobacter) agglomerans. Environmental Entomology 38(1): 116–120. https://doi.org/10.1603/022.038.0114

Mereghetti V, Chouaia B and Montagna M. (2017). New insights into the microbiota of moth pests. International Journal of Molecular Sciences 18(11): 2450. https://doi.org/10.3390/ijms18112450

Morimoto J, Nguyen B, Tabrizi S T, Lundbäck I, Taylor P W, Ponton F and Chapman T A. (2019). Commensal microbiota modulates larval foraging behaviour, development rate and pupal production in Bactrocera tryoni. BMC Microbiology 19(December): 286. https://doi.org/10.1186/s12866-019-1648-7

Nardi J B, Mackie R I and Dawson J O. (2002). Could microbial symbionts of arthropod guts contribute significantly to nitrogen fixation in terrestrial ecosystems? Journal of Insect Physiology 48(8): 751–763. https://doi.org/10.1016/S0022-1910(02)00105-1

Ng S H, Stat M, Bunce M and Simmons L W. (2018). The influence of diet and environment on the gut microbial community of field crickets. Ecology and Evolution 8(9): 4704– 4720. https://doi.org/10.1002/ece3.3977

Niyazi N, Lauzon C R and Shelly T E. (2004). Effect of probiotic adult diets on fitness components of sterile male Mediterranean fruit flies (Diptera: Tephritidae) under laboratory and field cage conditions. Journal of Economic Entomology 97(5): 1570–1580. https://doi.org/10.1603/0022-0493-97.5.1570

Phalnikar K, Kunte K and Agashe D. (2018). Dietary and developmental shifts in butterfly- associated bacterial communities. Royal Society Open Science 5(5): 17155. https://doi.org/10.1098/rsos.171559

Pinto-Tomás A A, Anderson M A, Suen G, Stevenson D M, Chu F S T, Cleland W, Weimer P J and Currie C R. (2009). Symbiotic nitrogen fixation in the fungus gardens of leaf-cutter ants. Science 326(5956): 1120–1123. https://doi.org/10.1126/science.1173036

Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, Peplies J and Glöckner F O. (2013). The SILVA ribosomal RNA gene database project: Improved data processing and web-based tools. Nucleic Acids Research 41(D1): D590–D596. https://doi.org/10.1093/nar/gks1219

Robinson C J, Schloss P, Ramos Y, Raffa K and Handelsman J. (2010). Robustness of the bacterial community in the cabbage white butterfly larval midgut. Microbial Ecology 59(2): 199–211. https://doi.org/10.1007/s00248-009-9595-8

Sabree Z L, Hansen A K and Moran N A. (2012). Independent studies using deep sequencing resolve the same set of core bacterial species dominating gut communities of honey bees. PLoS ONE 7(7): e41250. https://doi.org/10.1371/journal.pone.0041250

Salim H and Hamid N H. (2012). Evaluation of several chemical control approaches against bagworm, Metisa plana Walker (Lepidoptera: Psychidae) in FELDA oil palm plantations. The Planter 88(1040): 785–799.

Salim H, Md Rawi C S, Ahmad A H and Al-Shami S A. (2015). Efficacy of insecticide and bioinsecticide ground sprays to control Metisa plana Walker (Lepidoptera: Psychidae) in oil palm plantations, Malaysia. Tropical Life Sciences Research 26(2): 73–83.

Sankaran T. (1970). The oil palm bagworms of Sabah and the possibilities of their biological control. PANS Pest Articles and News Summaries 16(1): 43–55. https://doi.org/10.1080/09670877009411717

Schloss P D, Westcott S L, Ryabin T, Hall J R, Hartmann M, Hollister E B, Ryan A. Lesniewski R A, et al. (2009). Introducing mothur: Open-source, platform- independent, community-supported software for describing and comparing microbial communities. Applied and Environmental Microbiology 75(23): 7537–7541. https://doi.org/10.1128/AEM.01541-09.

Shao Y, Chen B, Sun C, Ishida K, Hertweck C and Boland W. (2017). Symbiont-derived antimicrobials contribute to the control of the Lepidopteran gut microbiota. Cell Chemical Biology 24(1): 66–75. https://doi.org/10.1016/j.chembiol.2016.11.015

Snyman M, Gupta A K, Bezuidenhout C C, Claassens S and van den Berg J. (2016). Gut microbiota of Busseola fusca (Lepidoptera: Noctuidae). World Journal of Microbiology and Biotechnology 32(7): 115. https://doi.org/10.1007/s11274-016-2066-8

Staudacher H, Kaltenpoth M, Breeuwer J A J, Menken S B J, David G. Heckel D G and Groot A T. (2016). Variability of bacterial communities in the moth Heliothis virescens indicates transient association with the host. PLoS ONE 11(5): e0154514. https://doi.org/10.1371/journal.pone.0154514

Sturz A V, Christie B R, Matheson B G and Nowak J. (1997). Biodiversity of endophytic bacteria which colonize red clover nodules, roots, stems and foliage and their influence on host growth. Biology and Fertility of Soils 25(1): 13–19. https://doi.org/10.1007/s003740050273

Sudakaran S, Salem H, Kost C and Kaltenpoth M. (2012). Geographical and Ecological stability of the symbiotic mid-gut microbiota in European firebugs, Pyrrhocoris apterus (Hemiptera, Pyrrhocoridae). Molecular Ecology 21(24): 6134–6151. https://doi.org/10.1111/mec.12027

Voirol L R P, Frago E, Kaltenpoth M, Hilker M and Fatouros N E. (2018). Bacterial symbionts in Lepidoptera: Their Diversity, transmission, and impact on the host. Frontiers in Microbiology 9(March): 556. https://doi.org/10.3389/fmicb.2018.00556

Vorholt J A. (2012). Microbial life in the phyllosphere. Nature Reviews Microbiology 10: 828–840. https://doi.org/10.1038/nrmicro2910

Vorwerk S, Blaich R and Forneck A. (2007). Pantoea sp.: An associated bacteria common in grape phylloxera (Daktulosphaira vitifoliae Fitch). Acta Horticulturae, 733: 47–51. https://doi.org/10.17660/ActaHortic.2007.733.4

Walterson A M and Stavrinides J. (2015). Pantoea: Insights into a highly versatile and diverse genus within the Enterobacteriaceae. FEMS Microbiology Reviews 39(6): 968–984. https://doi.org/10.1093/femsre/fuv027

Wood B J. (1968). Pests of oil palms in Malaysia and their control. Kuala Lumpur: Incorporated Society of Planters.

Wood B J. (2019). A review of developments in integrated pest management (IPM) of bagworm (Lepidoptera: Psychidae) infestation in oil palms in Malaysia. Journal of Oil Palm Research 31(4): 529–539. https://doi.org/10.21894/jopr.2019.0047

Xia X, Sun B, Gurr G M, Vasseur L, Xue M and You M. (2018). Gut microbiota mediate insecticide resistance in the diamondback moth, Plutella xylostella (L.). Frontiers in Microbiology 9(January): 25. https://doi.org/10.3389/fmicb.2018.00025

Xia, X, Zheng D, Zhong H, Qin B, Gurr G M, Vasseur L, Lin H, Bai J, He W and You M. (2013). DNA sequencing reveals the midgut microbiota of diamondback moth, Plutella xylostella (L.) and a possible relationship with insecticide resistance. PLoS ONE 8(7): e68852. https://doi.org/10.1371/journal.pone.0068852.

Yang C-H, Crowley D E, Borneman J and Keen N T. (2001). Microbial phyllosphere populations are more complex than previously realized. Proceedings of the National Academy of Sciences of the United States of America 98(7): 3889–2894. https://doi.org/10.1073/pnas.051633898

Yap T H. (2000). The intelligent management of lepidoptera leaf eaters in mature oil palm by trunk injection (a review of principles). The Planter 78(887): 99–107.

Yuan X, Zhang X, Liu X, Dong Y, Yan Z, Lv D, Wang P and Li Y. (2021). Comparison of gut bacterial communities of grapholita molesta (Lepidoptera: Tortricidae) reared on different host plants. International Journal of Molecular Sciences 22(13): 6843. https://doi.org/10.3390/ijms22136843