Antidiabetic, Antioxidant and Anti-Inflammatory Activities of Residual Aqueous Fraction of Ethulia conyzoides in Induced Type 2 Diabetic Rats
Main Article Content
Abstract
Oxidative stress and inflammation have been proven to be implicated in the pathogenesis of type 2 diabetes. Recent studies showed that Ethulia conyzoides had in-vitro antioxidant activity. This study investigated the in-vivo antidiabetic, antioxidant, and anti-inflammatory potential of the residual aqueous fraction of Ethulia conyzoides in type 2 diabetic-induced male Wistar rats. Sub-acute antidiabetic studies were done with varying doses (100, 200, and 400 mg/kg body weight) of residual aqueous fraction for 21 days. Blood glucose levels, serum insulin, and in vivo antioxidant and pro-inflammatory cytokines— tumour necrosis factor- ? (TNF-?) and interleukin-1? (IL-1?) —were measured at the end of the treatment. When rats were given different concentrations of residual aqueous fraction, there was a significant (p < 0.05) reduction in blood glucose, malondialdehyde (MDA), IL-1?, and TNF-? levels, as well as a significant (p < 0.05) increase in SOD (superoxide dismutase), catalase and insulin levels when compared to the diabetic control group. Furthermore, the 400 mg/kg body weight dosage concentration was found to be the most effective. This result suggests that the residual aqueous fraction of Ethulia conyzoides possesses significant antidiabetic, antioxidant and anti-inflammatory activities.
Article Details
This work is licensed under a Creative Commons Attribution 4.0 International License.
References
Aliyu A, Ibrahim M, Ibrahim H, Musa A, Lawal A, Oshanimi J, Usman M, Abdulkadir I E, Oyewale A O and Amupitan J O. (2012). Free radical scavenging and total antioxidant capacity of methanol extract of Ethulia conyzoides growing in Nigeria. Romanian Biotechnological Letters 17(4): 7458–7465. https://www.researchgate.net/publication/230866418
Animaw W and Seyoum Y. (2017). Increasing prevalence of diabetes mellitus in a developing country and its related factors. PloS one 12(11): 1–11. https://doi.org/10.1371/journal.pone.0187670
Badawi A, Klip A, Haddad P, Cole D E, Bailo B G, El-Sohemy A and Karmali M. (2010). Type 2 diabetes mellitus and inflammation: Prospects for biomarkers of risk and nutritional intervention. Diabetes, Metabolic Syndrome and Obesity: Targets and Therapy 2010 (3): 173–186. https://doi.org/10.2147/DMSO.S9089
Bajaj S and Khan A. (2012). Antioxidants and diabetes. Indian Journal of Endocrinology and Metabolism 16(Suppl. 2): S267–S271. https://doi.org/10.4103/2230-8210.104057
Barzilay J I, Abraham L, Heckbert S R, Cushman M, Kuller L H, Resnick H E and Tracy R P. (2001). The relation of markers of inflammation to the development of glucose disorders in the elderly: The cardiovascular health study. Diabetes 50(10): 2384–2389. https://doi.org/10.2337/diabetes.50.10.2384
Burkill H M. (1985). The useful plants of West Tropical Africa, Vol. 4. Families AD: Royal Botanic Gardens.
Daryoush M, Bahram A T, Yousef D and Mehrdad N. (2011). Protective effect of turnip root (Brassica rapa L.) ethanolic extract on early hepatic injury in alloxanized diabetic rats. Australian Journal of Basic and Applied Sciences 5(7): 748–756. http://ajbasweb.com/old/ajbas/2011/July-2011/748-756.pdf
Duncan B B, Schmidt M I, Pankow J S, Ballantyne C M, Couper D, Vigo A, Hoogeveen R, Folsom A R and Heiss G. (2003). Low-grade systemic inflammation and the development of type 2 diabetes: The atherosclerosis risk in communities study. Diabetes 52(7): 1799–1805. https://doi.org/10.2337/diabetes.52.7.1799
El-Bassuony A A. (2009). Antibacterial activity of two new monoterpene coumarins from Ethulia conyzoides. Journal of Pharmacy Research 2(4): 582–584. https://www.cabdirect.org/cabdirect/abstract/20103127033
Eleazu C O, Okafor P N, Amajor J, Awa E, Ikpeama A I and Eleazu K C. (2011). Chemical composition, antioxidant activity, functional properties and inhibitory action of unripe plantain (M. Paradisiacae) flour. African Journal of Biotechnology 10(74): 16948–16952. https://doi.org/10.5897/AJB10.1180
Fridovich I. (1989). Superoxide dismutases. An adaptation to a paramagnetic gas. The Journal of Biological Chemistry 264(14): 7761–7764. https://doi.org/10.5897/AJB10.1180
Gaikwad S B, Mohan G K and Rani M S. (2014). Phytochemicals for diabetes management. Pharmaceutical Crops 5(Suppl1:M2): 11–28. https://doi.org/10.2174/2210290601405010011
Gidey M, Beyene T, Signorini M A, Bruschi P and Yirga G. (2015). Traditional medicinal plants used by Kunama ethnic group in Northern Ethiopia. Journal of Medicinal Plants Research 9(15): 494–509. https://doi.org/10.5897/JMPR2014.5681
Hämäläinen M, Nieminen R, Vuorela P, Heinonen M and Moilanen E. (2007). Anti- inflammatory effects of flavonoids: Genistein, Kaempferol, Quercetin, and Daidzein Inhibit STAT-1 and NF-?B activations, whereas Flavone, Isorhamnetin, Naringenin, and Pelargonidin inhibit only NF-?B activation along with their inhibitory effect on iNOS expression and NO production in activated macrophages. Mediators of Inflammation 2007: 1–10. https://doi.org/10.1155/2007/45673
Karuranga S, Malanda B, Saeedi P, Salpea P. (2019). IDF Diabetes atlas, 9th ed. Brussels, Belgium: IDF.
Inzucchi S E, Bergenstal R M, Buse J B, Diamant M, Ferrannini E, Nauck M, Peters A L, Tsapas A, Wender R and Matthews D R. (2015). Management of hyperglycaemia in type 2 diabetes, 2015: A patient-centred approach. Update to a position statement of the American Diabetes Association and the European Association for the Study of Diabetes. Diabetologia 58: 429–442. https://doi.org/10.1007/s00125-014-3460-0
Joshi A R and Joshi K. (2000). Indigenous knowledge and uses of medicinal plants by local communities of the Kali Gandaki Watershed Area, Nepal. Journal of Ethnopharmacology 73(1–2): 175–183. https://doi.org/10.1016/S0378-8741(00)00301-9
Kumawat M, Sharma T K, Singh I, Singh N, Ghalaut V S, Vardey S K and Shankar V. (2013). Antioxidant enzymes and lipid peroxidation in type 2 diabetes mellitus patients with and without nephropathy. North American Journal of Medical Sciences 5(3): 213–219. https://doi.org/10.4103/1947-2714.109193
Mahmoud Z F, Sarg T M, Amer M E and Khafagy S M. (1983). Anthelmintic coumarin from Ethulia conyzoides var. gracilis Asch. and Schweinf. Pharmazie 38(7): 486–487.
Nilsson J, Jovinge S, Niemann A, Reneland R and Lithell H. (1998). Relation between plasma tumor necrosis factor-? and insulin sensitivity in elderly men with non–insulin-dependent diabetes mellitus. Arteriosclerosis, Thrombosis, and Vascular Biology 18(8): 1199–1202. https://doi.org/10.1161/01.ATV.18.8.1199
Noumi E, Houngue F and Lontsi D. (1999). Traditional medicines in primary health care: Plants used for the treatment of hypertension in Bafia, Cameroon. Fitoterapia 70(2): 134–139. https://doi.org/10.1016/S0367-326X(98)00025-2
Odhiambo J A, Lukhoba C W and Dossaji S F. (2011). Evaluation of herbs as potential drugs/medicines. African Journal of Traditional, Complementary and Alternative Medicines 8(5S): 144–151. https://doi.org/10.4314/ajtcam.v8i5S.20
Ohkawa H, Ohishi N and Yagi K. (1979). Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Analytical Biochemistry 95(2): 351–358. https://doi.org/10.1016/0003-2697(79)90738-3
Okoduwa S I R, Umar I A, James D B and Inuwa H M. (2017a). Anti-diabetic potential of Ocimum gratissimum leaf fractions in fortified diet-fed streptozotocin treated rat model of type-2 diabetes. Medicines 4(4): 73. https://doi.org/10.3390/medicines4040073
Okoduwa S I R, Umar I A, James D B and Inuwa H M. (2017b). Appropriate insulin level in selecting fortified diet-fed, Streptozotocin-treated rat model of type 2 diabetes for anti-diabetic studies. PloS ONE 12(1):1–21. https://doi.org/10.1371/journal.pone.0170971
Okoduwa S I R, Umar I A, James D B and Inuwa H M. (2017c). Validation of the antidiabetic effects of Vernonia amygdalina delile leaf fractions in fortified diet-fed streptozotocin-treated rat model of type-2 diabetes. Journal of Diabetology 8(3): 74–85. https://doi.org/10.4103/jod.jod_19_17
Otsuka H. (2006). Purification by solvent extraction using partition coefficient. In Sarker S D, Latif Z, Gray A U (eds.). Natural products isolation. Totowa, NJ: Humana Press, 269–273.
Petchi R R, Vijaya C and Parasuraman S. (2014). Antidiabetic activity of polyherbal formulation in streptozotocin–nicotinamide induced diabetic Wistar rats. Journal of Traditional and Complementary Medicine 4(2): 108–117. https://doi.org/10.4103/2225-4110.126174
Qaid M M and Abdelrahman M M. (2016). Role of insulin and other related hormones in energy metabolism: A review. Cogent Food and Agriculture 2(1): 1–18. https://doi.org/10.1080/23311932.2016.1267691
Raza H, Prabu S K, John A and Avadhani N G. (2011). Impaired mitochondrial respiratory functions and oxidative stress in streptozotocin-induced diabetic rats. International Journal of Molecular Sciences 12(5): 3133–3147. https://doi.org/10.3390/ijms12053133
Rena G, Hardie D G and Pearson E R. (2017). The mechanisms of action of metformin. Diabetologia 60: 1577–1585. https://doi.org/10.1007/s00125-017-4342-z
Russell A W, Horowitz M, Ritz M, MacIntosh C, Fraser R and Chapman I M. (2001). The effect of acute hyperglycaemia on appetite and food intake in type 1 diabetes mellitus. Diabetic Medicine 18(9): 718–725. https://doi.org/10.1046/j.1464-5491.2001.00545.x
Sies H. (2015). Oxidative stress: A concept in redox biology and medicine. Redox Biology 4: 180–183. https://doi.org/10.1016/j.redox.2015.01.002
Sinha A K. (1972). Colorimetric assay of catalase. Analytical Biochemistry 47(2): 389–394. https://doi.org/10.1016/0003-2697(72)90132-7
Sowemimo A, van de Venter M, Baatjies L and Koekemoer T. (2009). Cytotoxic activity of selected Nigerian plants. African Journal of Traditional, Complementary and Alternative Medicines 6(4). 526–528. https://doi.org/10.4314/ajtcam.v6i4.57186
Spranger J, Kroke A, Möhlig M, Hoffmann K, Bergmann M M, Ristow M, Boeing H and Pfeiffer A F H. (2003). Inflammatory cytokines and the risk to develop type 2 diabetes: Results of the prospective population-based European prospective investigation into cancer and nutrition (EPIC)-potsdam study. Diabetes 52(3): 812–817. https://doi.org/10.2337/diabetes.52.3.812
Srinivasan K, Viswanad B, Asrat L, Kaul C L and Ramarao P. (2005). Combination of high- fat diet-fed and low-dose streptozotocin-treated rat: A model for type 2 diabetes and pharmacological screening. Pharmacological Research 52(4): 313–320. https://doi.org/10.1016/j.cbi.2011.10.003
Srinivasan S and Pari L. (2012). Ameliorative effect of diosmin, a citrus flavonoid against streptozotocin-nicotinamide generated oxidative stress induced diabetic rats. Chemico-Biological Interactions 195(1): 43–51. https://doi.org/10.1016/j.cbi.2011.10.003
Szkudelski T. (2001). The mechanism of alloxan and streptozotocin action in B cells of the rat pancreas. Physiological Research 50(6): 537–546. http://www.biomed.cas.cz/physiolres/pdf/50/50_537.pdf
Wang X, Bao W, Liu J, Ouyang Y Y, Wang D, Rong S, Xiao X, Shan Z-L, Zhang Y, Yao P and Liu L-G. (2013). Inflammatory markers and risk of type 2 diabetes: A systematic review and meta-analysis. Diabetes Care 36(1): 166–175. https://doi.org/10.2337/dc12-0702
World Health Oragnisation. (2013). Diagnostic criteria and classification of hyperglycaemia first detected in pregnancy. Switzerland: WHO Press. https://apps.who.int/iris/bitstream/handle/10665/85975/WHO_NMH_MND_13.2_eng.pdf?sequence=1&isAllowed=y
Yerima M and Samaila A. (2018). Hypoglycemic and antioxidant activity of residual aqueous extract of Tamarindus indica. International Journal of Pharmacological Research 8(8): 69–75.
Zhang Y, Hu T, Zhou H, Zhang Y, Jin G and Yang Y. (2016). Antidiabetic effect of polysaccharides from Pleurotus ostreatus in streptozotocin-induced diabetic rats. International Journal of Biological Acromolecules 83: 126–132. https://doi.org/10.1016/j.ijbiomac.2015.11.045