In Silico Screening and Molecular Dynamics Simulation of Potential Anti-Malarial Agents from Zingiberaceae as Potential Plasmodium falciparum Lactate Dehydrogenase (PfLDH) Enzyme Inhibitors

Main Article Content

Muhammad Fikri Heikal
Wira Eka Putra
Sustiprijatno
Muhaimin Rifa'i
Arief Hidayatullah
Febby Nurdiya Ningsih
Diana Widiastuti
Adawiyah Suriza Shuib
Baiq Feby Zulfiani
Afrabias Firyal Hanasepti

Abstract

Malaria continues to be a major public health issue in a number of countries, particularly in tropical regions—the emergence of drug-resistant Plasmodium falciparum encourages new drug discovery research. The key to Plasmodium falciparum survival is energy production up to 100 times greater than other parasites, primarily via the PfLDH. This study targets PfLDH with natural bioactive compounds from the Zingiberaceae family through molecular docking and molecular dynamic studies. Sulcanal, quercetin, shogosulfonic acid C, galanal A and naringenin are the Top 5 compounds with a lower binding energy value than chloroquine, which was used as a control in this study. By binding to NADH and substrate binding site residues, the majority of them are expected to inhibit pyruvate conversion to lactate and NAD+ regeneration. When compared to sulcanal and control drugs, the molecular dynamics (MD) simulation study indicated that quercetin may be the most stable molecule when interacting with PfLDH.

Article Details

How to Cite
In Silico Screening and Molecular Dynamics Simulation of Potential Anti-Malarial Agents from Zingiberaceae as Potential Plasmodium falciparum Lactate Dehydrogenase (PfLDH) Enzyme Inhibitors . (2023). Tropical Life Sciences Research, 34(2), 1–20. https://doi.org/10.21315/tlsr2023.34.2.1
Section
Original Article

References

Al-Adhroey A H, Nor Z M, Al-Mekhlafi H M and Mahmud R. (2010). Median lethal dose, antimalarial activity, phytochemical screening and radical scavenging of methanolic Languas galanga rhizome extract. Molecules 15(11): 8366–8376. https://doi. org/10.3390/molecules15118366

Alam A, Neyaz M K and Hasan S I. (2014). Exploiting unique structural and functional properties of malarial glycolytic enzymes for antimalarial drug development. Malaria Research and Treatment 2014 (December): Article ID 451065. https://doi. org/10.1155/2014/451065

Amadi S W, Zhang Y and Wu G. (2016). Research progress in phytochemistry and biology of Aframomum species. Pharmaceutical Biology 54(11): 2761–2770. https://doi.or g/10.3109/13880209.2016.1173068

Ayimele G A, Tane P and Connolly J D. (2004). Aulacocarpin A and B, nerolidol and ?-sitosterol glucoside from Aframomum escapum. Biochemical Systematics and Ecology 32(12): 1205–1207. https://doi.org/10.1016/j.bse.2004.03.012

Chaniad P, Mungthin M, Payaka A, Viriyavejakul P and Punsawad C. (2021). Antimalarial properties and molecular docking analysis of compounds from Dioscorea bulbifera L. as new antimalarial agent candidates. BMC Complementary Medicine and Therapies 21(1): 1–10. https://doi.org/10.1186/s12906-021-03317-y

Chaudhary S, Hisham H and Mohamed D. (2018). A review on phytochemical and pharmacological potential of watercress plant. Asian Journal of Pharmaceutical and Clinical Research 11(12): 102–107. https://doi.org/10.22159/ajpcr.2018. v11i12.29422

Chen I N, Chang C C, Ng C C, Wang C Y, Shyu Y T and Chang T L. (2008). Antioxidant and antimicrobial activity of Zingiberaceae plants in Taiwan. Plant Foods for Human Nutrition 63(1): 15–20. https://doi.org/10.1007/s11130-007-0063-7

Chinedum E, Kate E, Sonia C, Ironkwe A and Andrew I. (2015). Polyphenolic composition and antioxidant activities of 6 new turmeric (Curcuma Longa L.) accessions. Recent Patents on Food, Nutrition & Agriculture 7(1): 22–27. https://doi.org/10.21 74/2212798407666150401104716

Choi S B, Yap B K, Choong Y S and Wahab H. (2018). Molecular dynamics simulations in drug discovery. Encyclopedia of Bioinformatics and Computational Biology: ABC of Bioinformatics 3: 652–665. https://doi.org/10.1016/B978-0-12-809633-8.20154- 4

Choi S R, Pradhan A, Hammond N L, Chittiboyina A G, Tekwani B L and Avery M A. (2007). Design, synthesis, and biological evaluation of Plasmodium falciparum lactate dehydrogenase inhibitors. Journal of Medicinal Chemistry 50(16): 3841–3850. https://doi.org/10.1021/jm070336k

Chumroenphat T, Somboonwatthanakul I, Saensouk S and Siriamornpun S. (2019). The diversity of biologically active compounds in the rhizomes of recently discovered zingiberaceae plants native to North Eastern Thailand. Pharmacognosy Journal 11(5): 1014–1022. https://doi.org/10.5530/pj.2019.11.160

Dosoky N S and Setzer W N. (2018). Chemical composition and biological activities of essential oils of curcuma species. Nutrients 10(9): 10–17. https://doi.org/10.3390/ nu10091196

Duker-Eshun G, Jaroszewski J W, Asomaning W A, Oppong-Boachie F, Olsen C E and Christensen S B. (2002). Antiplasmodial activity of labdanes from Aframomum latifolium and Aframomum sceptrum. Planta Medica 68(7): 642–644. https://doi. org/10.1055/s-2002-32888

Dutta D, Marepally S K and Vemula P K. (2014). Noncovalent functionalization of cell surface. In: Karp J M and and Zhao W. (eds.), Micro-and Nanoengineering of the Cell Surface. New York: Elsevier, 99–120. https://doi.org/10.1016/B978-1-4557- 3146-6.00005-2

El-Sayed N and El-Saka M. (2015). Anti-parasitic activity of Zingiber officinale (ginger): A brief review. Aperito Journal of Bacteriology, Virology and Parasitology 2(1): 1–7.

Elshamy A I, Mohamed T A, Essa A F, Abd-Elgawad A M, Alqahtani A S, Shahat A A, Yoneyama T, Farrag A R H, Noji M, El-Seedi H R, Umeyama A, Paré P W and Hegazy M E F. (2019). Recent advances in Kaempferia phytochemistry and biological activity: A comprehensive review. Nutrients 11(10): 2396. https://doi. org/10.3390/nu11102396

Endale A, Bisrat D, Animut A, Bucar F and Asres K. (2013). In vivo antimalarial activity of a labdane diterpenoid from the leaves of Otostegia integrifolia benth. Phytotherapy Research 27(12): 1805–1809. https://doi.org/10.1002/ptr.4948

Florens L, Washburn M, Muster N, Wolters D, Gardner M, Anthony R, Haynes D, Moch K., Sacci J, Witney A, Grainger N, Holder A, Wu Y, Yates J and Carucci D. (2002). A proteomic view of the malaria parasite life cycle. Proceedings 50th ASMS Conference on Mass Spectrometry and Allied Topics 419(October): 59–60.

Goodwin R J A, Bunch J and McGinnity D F. (2017). Mass spectrometry imaging in oncology drug discovery. Advances in Cancer Research 134: 133–171. https:// doi.org/10.1016/bs.acr.2016.11.005

Hernández-Aquino E and Muriel P. (2018). Beneficial effects of naringenin in liver diseases: Molecular mechanisms. World Journal of Gastroenterology 24(16): 1679–1707. https://doi.org/10.3748/wjg.v24.i16.1679

Hollman P C H and Katan M B. (1999). Dietary flavonoids: Intake, health effects and bioavailability. Food and Chemical Toxicology 37(9–10): 937–942. https://doi. org/10.1016/S0278-6915(99)00079-4

Hori Y, Miura T, Hirai Y, Fukumura M, Nemoto Y, Toriizuka K and Ida Y. (2003). Pharmacognostic studies on ginger and related drugs - Part 1: Five sulfonated compounds from Zingiberis rhizome (Shokyo). Phytochemistry 62(4): 613–617. https://doi.org/10.1016/S0031-9422(02)00618-0

Igoli N P, Obanu Z A, Gray A I and Clements C. (2012). Bioactive diterpenes and sesquiterpenes from the rhizomes of wild ginger (Siphonochilus aethiopicus (Schweinf) B.L Burtt). African Journal of Traditional, Complementary and Alternative Medicines 9(1): 88–93. https://doi.org/10.4314/ajtcam.v9i1.13

Jain P, Chakma B, Patra S and Goswami P. (2014). Potential biomarkers and their applications for rapid and reliable detection of malaria. BioMed Research International 2014: Article 852645. https://doi.org/10.1155/2014/852645

Jaisinghani R N. (2017). Antibacterial properties of quercetin. Microbiology Research 8(1): 6877. https://doi.org/10.4081/mr.2017.6877

Jiang Z, You L, Dou W, Sun T and Xu P. (2019). Effects of an electric field on the conformational transition of the protein: A molecular dynamics simulation study. Polymers 11(2): 1–13. https://doi.org/10.3390/polym11020282

Kamaraj B and Purohit R. (2013). In silico screening and molecular dynamics simulation of disease-associated nsSNP in TYRP1 gene and its structural consequences in OCA3. BioMed Research International 2013: Article 697051. https://doi. org/10.1155/2013/697051

Kenmogne M, Prost E, Harakat D, Jacquier M J, Frédérich M, Sondengam L B, Zèches M and Waffo-Téguo P. (2005). Five labdane diterpenoids from the seeds of Aframomum zambesiacum. Phytochemistry 67(5): 433–438. https://doi. org/10.1016/j.phytochem.2005.10.015

Kim D W, Lee S M, Woo H S, Park J Y, Ko B S, Heo J D, Ryu Y B and Lee W S. (2016). Chemical constituents and anti-inflammatory activity of the aerial parts of Curcuma longa. Journal of Functional Foods 26: 485–493. https://doi.org/10.1016/j. jff.2016.08.026

Kim S, Thiessen P A, Bolton E E, Chen J, Fu G, Gindulyte A, Han L, He J, He S, Shoemaker B A, Wang J, Yu B, Zhang J and Bryant S H. (2016). PubChem substance and compound databases. Nucleic Acids Research 44(D1): D1202–D1213. https://doi. org/10.1093/nar/gkv951

Lategan C A, Campbell W E, Seaman T and Smith P J. (2009). The bioactivity of novel furanoterpenoids isolated from Siphonochilus aethiopicus. Journal of Ethnopharmacology 121(1): 92–97. https://doi.org/10.1016/j.jep.2008.10.007

Lee J, Kim T I, Lê H G, Yoo W G, Kang J M, Ahn S K, Myint M K, Lin K, Kim T S and Na B K. (2020). Genetic diversity of Plasmodium vivax and Plasmodium falciparum lactate dehydrogenases in Myanmar isolates. Malaria Journal 19(1): 1–15. https:// doi.org/10.1186/s12936-020-3134-y

Lehane A M and Saliba K J. (2008). Common dietary flavonoids inhibit the growth of the intraerythrocytic malaria parasite. BMC Research Notes 1: 1–5. https://doi. org/10.1186/1756-0500-1-26

Lipinski C A. (2004). Lead- and drug-like compounds: The rule-of-five revolution. Drug Discovery Today: Technologies 1(4): 337–341. https://doi.org/10.1016/j. ddtec.2004.11.007

Ma X N, Xie C L, Miao Z, Yang Q and Yang X W. (2017). An overview of chemical constituents from Alpinia species in the last six decades. RSC Advances 7(23): 14114–14144. https://doi.org/10.1039/c6ra27830b

Mahmud A W, Shallangwa G A and Uzairu A. (2020). In silico modeling of tetraoxane- 8-aminoquinoline hybrids active against Plasmodium falciparum. Beni-Suef University Journal of Basic and Applied Sciences 9(1): 19. https://doi.org/10.1186/ s43088-020-00044-0

Mao Q Q, Xu X Y, Cao S Y, Gan R Y, Corke H, Beta T and Li H Bin. (2019). Bioactive compounds and bioactivities of ginger (Zingiber officinale roscoe). Foods 8(6): 1–21. https://doi.org/10.3390/foods8060185

Markwalter C F, Davis K M and Wright D W. (2016). Immunomagnetic capture and colorimetric detection of malarial biomarker Plasmodium falciparum lactate dehydrogenase. Analytical Biochemistry 493(October): 30–34. https://doi. org/10.1016/j.ab.2015.10.003

Mathema V B and Na-bangchang K. (2015). A brief review on biomarkers and proteomic approach for malaria. Asian Pacific Journal of Tropical Medicine 8(4): 253–262.

Nasution F A M, Ardiansah B and Tambunan F S O. (2016). Chalcone and its pyrazole derivatives as potential Plasmodium falciparum lactate dehydrogenase. 1st Asian Researcher Symposium 1(1): 92–105. https://doi.org/10.13140/RG.2.1.2887.3847

Ngwa C J, Rosa T F de A and Pradel G. (2016). The biology of malaria gametocytes. In: Rodriguez-Morales A J. (Ed.), Current Topics in Malaria. IntechOpen. https://doi. org/10.5772/65464

Nurcholis W, Purwakusumah E D and Rahardjo M. (2012). Variation of bioactive compound and bioactivities of three temulawak promising lines at different geographical conditions. Indonesian Journal of Agronomy 40(May 2014): 153–159.

Palmeira C M and Rolo A P. (2014). Mitochondrial regulation: Methods and protocols. Method in Molecular Biology 1241: 1–194. https://doi.org/10.1007/978-1-4939- 1875-1

Patrick G L. (2020). Miscellaneous targets. In: Antimalarial agents: Design and mechanism of action. Elsevier Ltd, 547–594.

Penna-Coutinho J, Cortopassi W A, Oliveira A A, França T C C and Krettli A U. (2011). Antimalarial activity of potential inhibitors of Plasmodium falciparum lactate dehydrogenase enzyme selected by docking studies. PLoS ONE 6(7): e21237. https://doi.org/10.1371/journal.pone.0021237

Priya R, Sumitha R, Doss Cg P, Rajasekaran C, Babu S, Seenivasan R and Siva R. (2015). Molecular docking and molecular dynamics to identify a novel human immunodeficiency virus inhibitor from alkaloids of Toddalia asiatica. Pharmacognosy Magazine 11(44): 414. https://doi.org/10.4103/0973-1296.168947

Ramakrishnan G, Chandra N and Srinivasan N. (2017). Exploring antimalarial potential of FDA approved drugs: An in silico approach. Malaria Journal 16(1): 1–15. https:// doi.org/10.1186/s12936-017-1937-2

Read J A, Wilkinson K W, Tranter R, Sessions R B and Brady R L. (1999). Chloroquine binds in the cofactor binding site of Plasmodium falciparum lactate dehydrogenase. Journal of Biological Chemistry 274(15): 10213–10218. https://doi.org/10.1074/ jbc.274.15.10213

Saeedi-Boroujeni A and Mahmoudian-Sani M R. (2021). Anti-inflammatory potential of Quercetin in COVID-19 treatment. Journal of Inflammation (United Kingdom) 18(1): 1–9. https://doi.org/10.1186/s12950-021-00268-6

Sharifi-Rad M, Varoni E M, Salehi B, Sharifi-Rad J, Matthews K R, Ayatollahi S A, Kobarfard F, Ibrahim S A, Mnayer D, Zakaria Z A, Sharifi-Rad M, Yousaf Z, Iriti M, Basile A and Rigano D. (2017). Plants of the genus zingiber as a source of bioactive phytochemicals: From tradition to pharmacy. Molecules 22(12): 1–20. https://doi. org/10.3390/molecules22122145

Singh B N, Upreti D K, Singh B R, Pandey G, Verma S, Roy S, Naqvi A H and Rawat A K S. (2015). Quercetin sensitizes fluconazole-resistant Candida albicans to induce apoptotic cell death by modulating quorum sensing. Antimicrobial Agents and Chemotherapy 59(4): 2153–2168. https://doi.org/10.1128/AAC.03599-14

Sirirugsa P. (1999). Thai Zingiberaceae : Species diversity and their uses. Pure and Applied Chemistry 70(11): 23–27. http://www.iupac.org/symposia/proceedings/phuket97/ sirirugsa.html

Sriphana U, Pitchuanchom S, Kongsaeree P and Yenjai C. (2013). Antimalarial activity and cytotoxicity of zerumbone derivatives. ScienceAsia 39(1): 95–99. https://doi. org/10.2306/scienceasia1513-1874.2013.39.095

Tane P, Tatsimo S D, Ayimele G A and Connolly J D. (2005). Bioactive metabolites from Aframomum species. 11th NAPRECA Symposium Book of Proceedings, Antananarivo, Madagascar March: 214–223.

Tchuendem M H K, Mbah J A, Tsopmo A, Foyere Ayafor J, Sterner O, Okunjic C C, Iwu M. M and Schuster B M. (1999). Anti-plasmodial sesquiterpenoids from the African Reneilmia cincinnata. Phytochemistry 52(6): 1095–1099. https://doi.org/10.1016/ S0031-9422(99)00344-1

Thongnest S, Mahidol C, Sutthivaiyakit S and Ruchirawat S. (2005). Oxygenated pimarane diterpenes from Kaempferia marginata. Journal of Natural Products 68(11): 1632– 1636. https://doi.org/10.1021/np050186l

Tian M, Wu X, Hong Y, Wang H, Deng G and Zhou Y. (2020). Comparison of chemical composition and bioactivities of essential oils from fresh and dry rhizomes of Zingiber zerumbet (L.) smith. BioMed Research International 2020: Article 9641284. https://doi.org/10.1155/2020/9641284

Van Niekerk D D, Penkler G P, Du Toit F and Snoep J L. (2016). Targeting glycolysis in the malaria parasite Plasmodium falciparum. FEBS Journal 283(4): 634–646. https:// doi.org/10.1111/febs.13615

Vander Jagt D L, Hunsaker L A, Campos N M and Baack B R. (1990). d-Lactate production in erythrocytes infected with Plasmodium falciparum. Molecular and Biochemical Parasitology 42(2): 277–284. https://doi.org/10.1016/0166-6851(90)90171-H

Varma A K, Patil R, Das S, Stanley A, Yadav L and Sudhakar A. (2010). Optimized hydrophobic interactions and hydrogen bonding at the target-ligand interface leads the pathways of Drug-designing. PLoS ONE 5(8): e12029. https://doi.org/10.1371/ journal.pone.0012029

Wabo H K, Tane P and Connolly J D. (2006). Diterpenoids and sesquiterpenoids from Aframomum arundinaceum. Biochemical Systematics and Ecology 34(7): 603– 605. https://doi.org/10.1016/j.bse.2006.02.001

Wirth J D, Boucher J I, Jacobowitz J R, Classen S and Theobald D L. (2018). Functional and structural resilience of the active site loop in the evolution of plasmodium lactate dehydrogenase. Biochemistry 57(45): 6434–6442. https://doi.org/10.1021/ acs.biochem.8b00913

World Health Organization. (2016). Eliminating malaria. http://www.who.int/about/licensing/ copyright_form/en/index.html

Xu D, Hu M J, Wang Y Q and Cui Y L. (2019). Antioxidant activities of quercetin and its complexes for medicinal application. Molecules 24(6): 1123. https://doi. org/10.3390/molecules24061123

Yam X Y, Niang M, Madnani K G and Preiser P R. (2017). Three Is a crowd: New insights into rosetting in Plasmodium falciparum. Trends in Parasitology 33(4): 309–320. https://doi.org/10.1016/j.pt.2016.12.012

Yao F, Huang Y, Wang Y and He X. (2018). Anti-inflammatory diarylheptanoids and phenolics from the rhizomes of kencur (Kaempferia galanga L.). Industrial Crops and Products 125(September): 454–461. https://doi.org/10.1016/j.indcrop.2018.09.026

Zahara M, Hasanah M and Zalianda R. (2018). Identification of Zingiberaceae as medicinal plants in Gunung Cut Village, Aceh Barat Daya, Indonesia. Journal of Tropical Horticulture 1(1): 24. https://doi.org/10.33089/jthort.v1i1.9

Zhao Z, Han F, Yang S, Wu J and Zhan, W. (2015). Oxamate-mediated inhibition of lactate dehydrogenase induces protective autophagy in gastric cancer cells: Involvement of the Akt-mTOR signaling pathway. Cancer Letters 358(1): 17–26. https://doi. org/10.1016/j.canlet.2014.11.046

Zofou D, Ntie-Kang F, Sippl W and Efange S M N. (2013). Bioactive natural products derived from the Central African flora against neglected tropical diseases and HIV. Natural Product Reports 30(8): 1098–1120. https://doi.org/10.1039/c3np70030e