Improvement of Prebiotic Properties and Resistant Starch Content of Corn Flour (Zea mays L.) Momala Gorontalo Using Physical, Chemical and Enzymatic Modification
Main Article Content
Abstract
Probiotics are a non-digestible food ingredient that promotes the growth of beneficial microorganisms in the intestines. One of the functional food ingredients, Momala corn flour, is a source of prebiotics with a resistant starch content of 4.42%. This study aimed to improve the prebiotic properties and resistant starch content of modified corn flour (MCF) Momala Gorontalo by using physical, chemical, and enzymatic modification processes. The research methods include physical modification (heat moisture treatment, annealing, autoclaving-cooling cycling, microwave), chemical modification (acid hydrolysis), and enzymatic modification (debranching pullulanase). The results showed that the modified by heat moisture treatment (HMT) increased RS levels 1-fold, annealing modification (ANN) 8.9-fold, autoclaving-cooling one cycle modification (AC-1C) 2.9-fold, autoclaving-cooling two cycles modification (AC-2C) 2.0-fold, microwave modification (MW) 1.3-fold, acid hydrolysis (HA) modification 5.0-fold, and debranching pullulanase (DP) modification 3.8-fold compared with corn flour control without modification. The value of the prebiotic activity of MCF hydrolysed acid (HA) is 0.03, and debranching pullulanase (DP) is 0.02 against Enteropathogenic Escherichia coli (EPEC). The prebiotic effect value of MCF HA and DP were 0.76 and 0.60, respectively. The prebiotic index value of MCF HA and DP were 0.60 and 0.48, respectively. This study confirms that MCF HA and DP are good prebiotic candidates because they have resistant starch content, low starch digestibility, and resistance to simulated gastric fluid hydrolysis than unmodified corn flour.
Article Details
This work is licensed under a Creative Commons Attribution 4.0 International License.
References
Barua S, Rakshit M, and Srivastav P P. (2021). Optimization and digestogram modeling of hydrothermally modified elephant foot yam (Amorphophallus paeoniifolius) starch using hot air oven, autoclave, and microwave treatments. LWT - Food Science and Technology 145: 111283. https://doi.org/10.1016/j.lwt.2021.111283
Chandrasekaran S, Ramanathan S and Basak T. (2013). Microwave food processing: A review. International Food Research Journal 52(1): 243–261. https://doi. org/10.1016/j.foodres.2013.02.033
Chang R, Tian Y, Lu H, Sun C and Jin Z. (2020). Effects of fractionation and heat-moisture treatment on structural changes and digestibility of debranched waxy maize starch. Food Hydrocolloids 101: 105488. https://doi.org/10.1016/j.foodhyd.2019.105488
Chung H J, Liu Q and Hoover R. (2019). Impact of annealing and heat-moisture treatment on rapidly digestible, slowly digestible and resistant starch levels in native and gelatinized corn, pea and lentil flour. Carbohydrate Polymers 75(3): 436–447. https://doi.org/10.1016/j.carbpol.2008.08.006
Cono T H M, Kandowangko N Y and Retnowati Y. (2021). Analysis of the anthocyanin content of local corn in Gorontalo (Zea mays, L.) varieties of binthe kiki, binthe Momala, binthe pulo. Jambura Journal of Chemistry 3(1): 22–30.
Deka D and Sit N. (2016). Dual modification of taro starch by microwave and other heat moisture treatments. International Journal of Biological Macromolecules 92: 416– 422. https://doi:org/10.1016/j.ijbiomac.2016.07.040
Dubois M, Gilles K A, Hamilton J K, Rebers P A and Smith F. (1956). Calorimetric method for determination of sugars and related substance. Analytical Chemistry 28: 350– 356. https://doi.org/10.1021/ac60111a017
Englyst H N, Kingman S M and Cummings J H. (1992). Classification and measurement of nutritionally important starch fraction. European Journal of Clinical Nutrition 46(2): 533–550.
Huang T, Zhou D, Jin Z, Xu X and Chen H. (2015). Effect of debranching and heat-moisture treatments on structural characteristics and digestibility of sweet potato starch. Food Chemistry 187: 218–224. https://doi.org/10.1016/j.foodchem.2015.04.050
Imelda F, Purwandani L and Saniah. (2020). Total bakteri asam laktat, total asam tertitrasi dan tingkat kesukaan pada yoghurt drink dengan ubi jalar ungu sebagai sumber prebiotik (Total lactic acid bacteria, total titrated acid and preference level on yogurt drink with purple sweet potato as a source of prebiotics). Jurnal Vokasi 15(1): 1–7. https://doi.org/10.31573/vokasi.v15i1.147
International Rice Research Institute [IRRI]. (1979). Rice improvement in China and other Asian countries. Laguna, Philippines: IRRI.
Janggu J P, Wirjatmadi B, Adriani M and Trisnawati R. (2021). The potential of giving synbiotic yogurt made from purple sweet potato on the amount of E. Coli in wistar rat feces. Nutrition and Food Archives 6(2): 164–173. https://doi.org/10.22236/ argipa.v6i2.6772
Ji Y and Yu X. (2018). In vitro digestion and physicochemical characteristics of corn starch mixed with amino acid modified by low pressure treatment. Food Chemistry. 242: 421–426. https://doi.org/10.1016/j.foodchem.2017.09.073
Larder C E, Baeghbali V, Pilon C, Iskandar M M, Donnelly D J, Pacheco S, Godbaut S, Ngadi M O and Kubow S. (2019). Effect of non-conventional drying methods on in vitro starch digestibility assessment of cooked potato genotypes. Foods 382(8): 1–14. https://doi.org/10.3390/foods8090382
Lee D J, Park E Y, Lim S T. (2019). Effects of partial debranching and storage temperature on recrystallization of waxy maize starch. International Journal of Biological Macromolecules 140: 350–357. https://doi.org/10.1016/j.ijbiomac.2019.08.128
Li X, Wang Y, Lee B H and Li D. (2018). Reducing digestibility and viscoelasticity of oat starch after hydrolysis by pullulanase from Bacillus acidopullulyticus. Food Hydrocolloids 75: 88–94. https://doi.org/10.1016/j.foodhyd.2017.09.009
Lu X, Chang R, Lu H, Ma R, Qio L and Tian Y. (2021). Effect of amino acids composing rice protein on rice starch digestibility. LWT - Food Science and Technology 146: 1114117. https://doi.org/10.1016/j.lwt.2021.111417
Magallanes-Cruz P A, Flores-Silva P C and Bello-Perez L A. (2017). Starch structure influences its digestibility: A review. Journal Food of Science 82: 2016–2023. https://doi.org/10.1111/1750-3841.13809
Mapengo C R, Ray S S and Emmambux M N. (2021). Structural and digestibility properties of infrared heat-moisture treated maize starch complexed with stearic acid. International Journal of Biological Macromolecules 180: 559–569. https://doi. org/10.1016/j.ijbiomac.2021.03.100
Moongngarm A. (2013). Chemical compositions and resistant starch content in starchy foods. American Journal of Agricultural and Biological Sciences 8(2): 107–113. https://doi.org/10.3844/ajabssp.2013.107.113
Morales-Medina R, Munio M M, Guadix E M, Guadix A. (2014). Production of resistant starch by enzymatic debranching in legume flours. Carbohydrate Polymers 101: 1176–1183. https://doi.org/10.1016/j.carbpol.2013.10.027
Mutlu S, Kahraman K, Severcan S and Ozturk. (2018). Modelling the effects of debranching and microwave irradiation treatments on the properties of high amylose corn starch by using response surface methodology. Food Biophysics 13(1): 9532. https://doi. org/10.1007/s11483-018-9532-9
Na J H, Jeong G A, Park H J and Lee C J. (2021). Impact of esterification with malic acid on the structural characteristics and in vitro digestibilities of different starches. International Journal of Biological Macromolecules 174: 540–548. https://doi. org/10.1016/j.ijbiomac.2021.01.220
Ning Y, Cui B, Yuan C, Zou Y, Liu W and Pan Y. (2020). Effects of konjac glucomannan on the rheological, microstructure and digestibility properties of debranched corn starch. Food Hydrocolloids. 100: 105342. https://doi:org/10.1016/j.foodhyd.2019.105342
Oh S, Seo D, Park C, Kim Y and Baik M. (2022). Effects of stirring during gelatinization and shaking during hydrolysis on the characteristics of short-chain glucan aggregates (SCGA). Food Hydrocolloids 123: 107174. https://doi.org/10.1016/j. foodhyd.2021.107174
Otemuyiwa I O and Aina A F. (2021). Physicochemical properties and in-vitro digestibility studies of microwave assisted chemically modified breadfruit (Artocarpus altilis) starch. International Journal of Food Properties 24(1): 140–151. https://doi.org/10 .1080/10942912.2020.1861007
Shaikh M, Haider S, Ali T M and Hasnain A.(2019). Physical, thermal, mechanical and barrier properties of pearl millet starch films as affected by levels of acetylation and hydroxypropylation. International Journal of Biological Macromolecules 124: 209–219. https://doi.org/10.1016/j.ijbiomac.2018.11.135 Piecyk M and Domian K. (2021). Effects of heat–moisture treatment conditions on the physicochemical properties and digestibility of field bean starch (Vicia faba var. minor). International Journal of Biological Macromolecules 183: 425–433. https://doi.org/10.1016/j.ijbiomac.2021.04.015
Putra R P. (2020). Potensi prebiotik tepung pisang yang dimodifikasi menggunakan pemanasan autoklaf dilanjutkan dengan retrogradasi (Prebiotic potential of modified banana flour using autoclave heating followed by retrogradation). Jurnal Pendidikan Teknologi Pertanian 6(2): 349–360.
Ren N, Ma Z, Li X and Hu X (2021). Preparation of rutin-loaded microparticles by debranched lentil starch-based wall materials: Structure, morphology and in vitro release behavior. International Journal of Biological Macromolecules 173: 293– 306. https://doi.org/10.1016/j.ijbiomac.2021.01.122
Sudheesh C, Sunooj J V, Bhavani B, Asliya B, Navaf M, Akhila P P, Sabu S, Sasidharan A, Sinha S K, Kumar S, et al. (2020). Energetic neutral atoms assisted development of kithul (Caryota urens) starch–lauric acid complexes: A characterisation study. Carbohydrate Polymers 250: 116991. https://doi.org/10.1016/j. carbpol.2020.116991
Thuengtung S, Matsushita Y and Ogawa Y. (2019). Comparison between microwave-cooking and steam-cooking on starch properties and in vitro starch digestibility of cooked pigmented rice. Journal of Food Process Engineering 42: e13150. https:// doi.org/10.1111/jfpe.13150
Tu D, Ou Y, Zheng Y, Zhang Y, Zheng B and Zeng H. (2021). Effects of freeze-thaw treatment and pullulanase debranching on the structural properties and digestibility of lotus seed starch-glycerin monostearin complexes. International Journal of Biological Macromolecules 177: 447–454. https://doi.org/10.1016/j.ijbiomac.2021.02.168
Ye X, Wang M, Shen Q, Hu L, Hu Y, Liu D and Chen J. (2018). Physicochemical properties, structure and in vitro digestibility on complex of starch with lotus (Nelumbo nucifera Gaertn.) leaf flavonoids. Food Hydrocolloids 81: 191–199. https://doi.org/10.1016/j. foodhyd.2018.02.020
Zailani M A, Kamilah H, Husaini A Sarbini S R. (2021). Physicochemical properties of microwave heated sago (Metroxylon sagu) starch. Journal Food 1(9): 596–605. https://doi.org/10.1080/19476337.2021.1934550
Zailani M A, Kamilah H, Husaini A, Seruji A Z R A and Sarbini S R. (2022). Functional and digestibility properties of sago (Metroxylon sagu) starch modified by microwave heat treatment. Food Hydrocolloids 122: 107042. https://doi.org/10.1016/j. foodhyd.2021.107042
Zavarezel E D R, Halal S L M, Santos D G, Helbig E, Pereira J M and Dias A R G. (2021). Resistant starch and thermal, morphological and textural properties of heat-moisture treated rice starches with high-medium-and low-amylose content. Starch – Stärke 64: 45–54. https://doi.org/10.1002/star.201100080
Zeng F, Li T, Zhao H, Zhen H, Chen H, Yu X and Liu B. (2019). Effect of debranching and temperature-cycled crystallization on the physicochemical properties of kudzu (Pueraria lobata) resistant starch. International Journal of Biological Macromolecules 129: 1148–1154. https://doi.org/10.1016/j.ijbiomac.2019.01.028
Zhong Y, Liu S, Chen H, Li X, Ling C, Lin L and Jie Z. (2017). Effect of amylose/amylopectin ratio of esterified starch-based films on inhibition of plasticizer migration during microwave heating. Food Control 82: 283–290. https://doi.org/10.1016/j. foodcont.2017.06.038