Thermal Relationship in Tropical Anurans from Two Contrasting Habitats Along an Elevation Gradient in Colombia

Main Article Content

Katalina Gutiérrez Hernández
Carlos Alberto Galindo Martínez
Jorge Luis Turriago González
Manuel Hernando Bernal Bautista

Abstract

Anurans are ectothermic organisms highly susceptible to variations in the environmental temperature that changes with elevation and between habitats in tropical mountains. The aim of this study was to evaluate the variation of body temperature (BT) of nocturnal anurans from two contrasting habitats (open and forest habitats) along an elevation gradient in Colombia. We measured the environmental temperatures (substrate and air) and BT of 135 adult frogs of 11 species from open and forest habitats at three elevational zones of an Andean Mountain. The BT had a positive and significant relationship with environmental temperatures and showed a higher thermal dependence for substrate than air temperature, which suggests that anurans are thermoconformers and potentially tigmotherms. Additionally, BT of anurans from both habitats decreased with the elevation, but species from open habitats had a higher BT than forest species. Therefore, the impact of environmental temperatures on anurans that live at a similar altitude level is not the same, as the type of habitat has a strong influence on their BT. This information is important to a better understanding of anuran thermal biology, refine conservation strategies, and to improve the predictive power of environmental data in forecasting the effects of climate change on small ectotherms such as amphibians.

Article Details

How to Cite
Thermal Relationship in Tropical Anurans from Two Contrasting Habitats Along an Elevation Gradient in Colombia. (2024). Tropical Life Sciences Research, 35(1), 217–232. https://doi.org/10.21315/tlsr2024.35.1.12
Section
Original Article

References

Angilletta M J. (2009). Thermal adaptation a theoretical and empirical synthesis. New York, Oxford University Press. https://doi.org/10.1093/acprof:oso/9780198570875.001.1

Alroy J. (2017). Effects of habitat disturbance on tropical forest biodiversity. Proceedings of the National Academy of Sciences 114(23): 6056–6061. https://doi.org/10.1073/pnas.1611855114

Angulo A, Rueda J, Rodriguez J and La Marca E. (2006). Técnicas de inventario y monitoreo para los anfibios de la Región Tropical Andina [Inventory and monitoring techniques for amphibians of the Tropical Andean Region]. Bogotá DC: Conservación Internacional.

Armesto L O and Señaris J C. (2017). Anuros del norte de los andes: Patrones de riqueza de especies y estado de conservación [Northern Andean anurans: Patterns of species richness and conservation status]. Papéis Avulsos de Zoologia 57(39): 491–526. https://doi.org/10.11606/0031-1049.2017.57.39

Bernal M H and Lynch J D. (2013). Thermal tolerance in anuran embryos with different reproductive modes: Relationship to altitude. The Scientific World Journal 2013: 1–7. https://doi.org/10.1155/2013/183212

Blomberg S P, Garland T and Ives A R. (2003). Testing for phylogenetic signal in comparative data: Behavioral traits are more labile. Evolution 57(4): 717–745. https://doi.org/10.1111/j.0014-3820.2003.tb00285.x

Bohlman S, Matelson T and Nadkarni N. (1995). Moisture and temperature patterns of canopy humus and forest floor soil of a montane cloud forest, Costa Rica. Biotropica 27: 13–19. https://doi.org/10.2307/2388898

Brattstrom B H. (1963). A preliminary review of the thermal requirements of amphibians. Ecology 44(2): 238–255. https://doi.org/10.2307/1932171

Carvajalino J M, Bonilla M A and Navas C A. (2011). Freezing risk in tropical high-elevation anurans: An assessment based on the Andean frog Pristimantis nervicus (Strobomantidae). South American Journal of Herpetology 6(2): 73–78. https://doi.org/10.2994/057.006.0205

Catenazzi A, Lehr E and Vredenburg V T. (2014). Thermal physiology, disease, and amphibian declines on the Eastern slopes of the Andes. Conservation Biology 28(2): 509–517. https://doi.org/10.1111/cobi.12194

Corn P S. (2005). Climate change and amphibians. Animal Biodiversity and Conservation 28(1): 59–67. https://doi.org/10.32800/abc.2005.28.0059

Corser J D. (2001). Decline of disjunct green salamander (Aneides aeneus) populations in the southern Appalachians. Biological Conservation 97: 119–126. https://doi.org/10.1016/S0006-3207(00)00106-3

Cruz E X, Galindo C A and Bernal M H. (2016). Dependencia térmica de la salamandra endémica de Colombia Bolitoglossa ramosi (Caudata, plethodontidae). Iheringia – Série Zoologia 106: e2016018. https://doi.org/10.1590/1678-4766e2016018

De Frenne P, Lenoir J, Luoto M, Scheffers B, Zellweger F, Aalto J, Ashcroft M, Christiansen D, Decocq G, Pauw K, Govaert S, Greiser C, Gril E, Hampe A, Tommaso J, et al. (2021). Forest microclimates and climate change: Importance, drivers and future research agenda. Global Change Biology 27(11): 2279–2297. https://doi.org/10.1111/gcb.15569

Delgado P and Burrowes P A. (2022). Response to thermal and hydric regimes point to differential inter- and intraspecific vulnerability of tropical amphibians to climate warming. Journal of Thermal Biology 103: 1–11. https://doi.org/10.1016/j.jtherbio.2021.103148

Duellman W E and Trueb L. (1994). Biology of amphibians. Baltimore, MD: The Johns Hopkins University Press.

Ehlers T A and Poulsen C J. (2009). Influence of Andean uplift on climate and paleoaltimetry estimates. Earth and Planetary Science Letters 281(3–4): 238–248. https://doi.org/10.1016/j.epsl.2009.02.026

FAO. (2001). Causas y tendencias de la deforestación en América Latina. https://www.fao.org/3/ad680s/ad680s00.htm#TopOfPage (accessed on 3 June 2021).

Feder M E and Lynch J F. (1982). Effects of latitude, season, elevation, and microhabitat on field body temperatures of neotropical and temperate zone salamanders. Ecology 63(6): 1657–1664. https://doi.org/10.2307/1940107

Galeana J M, Corona N and Ordóñez J A. (2009). Análisis dimensional de la cobertura vegetal-uso de suelo en la cuenca del río Magdalena [Dimensional analysis of vegetation cover-land use in the Magdalena River basin]. Ciencia Forestal En México 34(105): 137–158.

Gates D M. (1980). Biophysical ecology. New York: Springer-Verlag. https://doi.org/10.1007/978-1-4612-6024-0

Hillman S S, Withers P C, Drewes R C and Hillyard S D. (2008). Ecological and environmental physiology of amphibians. Oxford: Oxford University Press. https://doi.org/10.1093/acprof:oso/9780198570325.001.0001

Hussain Q A and Pandit A K. (2012). Global amphibian declines: A review. International Journal of Biodiversity and Conservation 4(10): 348–357. https://doi.org/10.5897/IJBC12.008

Iturra M, Vidal M, Labra A and Ortiz J C. (2014). Winter thermal ecology of Pleurodema thaul (Amphibia: Leptodactylidae). Gayana 78(1): 25–30. https://doi.org/10.4067/s0717-65382014000100004

Jones M M, Szyska B and Kessler M. (2011). Microhabitat partitioning promotes plant diversity in a tropical montane forest. Global Ecology and Biogeography 20(4): 558–569. https://doi.org/10.1111/j.1466-8238.2010.00627.x

Khatiwada J R, Zhao T and Jiang J. (2020). Variation of body temperature of active amphibians along elevation gradients in eastern Nepal Himalaya. Journal of Thermal Biology 92: 1–8. https://doi.org/10.1016/j.jtherbio.2020.102653

Lara R A and Luja V H. (2018). Body temperatures of some amphibians from Nayarit, Mexico. Revista Mexicana de Biodiversidad 89(2): 577–581. https://doi.org/10.22201/ib.20078706e.2018.2.2122

Leyte A, Gonzáles R L, Quintero G E, Alejo F and Berriozabal C. (2018). Aspectos ecológicos de una comunidad de anuros en un ambiente tropical estacional en Guanajuato, México [Ecological aspects of an anuran community in a seasonal tropical environment in Guanajuato, Mexico]. Acta Zoológica Mexicana 34(1): 1–14. https://doi.org/10.21829/azm.2018.3412138

Lynch J D and Suárez A. (2002). Análisis biogeográfico de los anfibios paramunos [Biogeographic analysis of paramuno amphibians]. Caldasia 24(2): 471–480.

Mantyka C, Martin T and Rhodes J. (2011). Interactions between climate and habitat loss effects on biodiversity: A systematic review and meta-analysis. Global Change Biology 18: 1239–1252. https://doi.org/10.1111/j.1365-2486.2011.02593.x

Navas C A, Carvajalino J M, Saboyá L P, Rueda L A and Carvajalino M A. (2013). The body temperature of active amphibians along a tropical elevation gradient: patterns of mean and variance and inference from environmental data. Functional Ecology 27(5): 1145–1154. https://doi.org/10.1111/1365-2435.12106

Nowakowski A J, Watling J I, Thompson M E, Brusch G A, Catenazzi A, Whitfield S M, Kruz D J, Suarez A, Aponte A, Donnelly M A and Todd B D. (2018). Thermal biology mediates responses of amphibians and reptiles to habitat modification. Ecology Letters 21(3): 345–355. https://doi.org/10.1111/ele.12901

Nowakowski A J, Watling J I, Whitfield S M, Todd B D, Kurz D J and Donnelly M A. (2017). Tropical amphibians in shifting thermal landscapes under land-use and climate change. Conservation Biology 31(1): 96–105. https://doi.org/10.1111/cobi.12769

Oromí N, Sanuy D and Sinsch U. (2010). Thermal ecology of natterjack toads (Bufo calamita) in a semiarid landscape. Journal of Thermal Biology 35(1): 34–40. https://doi.org/10.1016/j.jtherbio.2009.10.005

Ortiz C E, Páez V, Zapata F A. (2013). Temperature and precipitation as predictors of species richness in northern Andean amphibians from Colombia. Caldasia 35(1): 65–80.

Pincebourde S and Suppo C. (2016). The vulnerability of tropical ectotherms to warming is modulated by the microclimatic heterogeneity. Integrative and Comparative Biology 56(1): 85–97. https://doi.org/10.1093/icb/icw014

Pintanel P, Tejedo M, Ron S R, Llorente G A and Merino A. (2019). Elevational and microclimatic drivers of thermal tolerance in Andean Pristimantis frogs. Journal of Biogeography 46(8): 1664–1675. https://doi.org/10.1111/jbi.13596

Pough F H, Andrews R M, Crump M L, Savitzky A H, Wells K D and Brandley M C. (2015). Herpetology, 4th ed. New York: Sinauer Associates. https://doi.org/10.1093/hesc/9781605352336.001.0001

Ramírez S, Meza P, Yánez M and Reyes J. (2009). Asociaciones interespecíficas de anuros en cuatro gradientes altitudinales de la Reserva Biológica Tapichalaca, Zamora- Chinchipe, Ecuador [Interspecific associations of anurans in four altitudinal gradients of the Tapichalaca Biological Reserve, Zamora-Chinchipe, Ecuador]. Serie Zoológica 4–5: 35–49.

Root T L, Price J T, Hall K R, Schneider S H, Rosenzweig C and Pounds J A. (2003). Fingerprints of global warming on wild animals and plants. Nature 421(41): 57–60. https://doi.org/10.1038/nature01333

Rueda L A, Navas C A, Carvajalino J M and Amézquita A. (2016). Thermal ecology of montane Atelopus (Anura: Bufonidae): A study of intrageneric diversity. Journal of Thermal Biology 58: 91–98. https://doi.org/10.1016/j.jtherbio.2016.04.007

Sanabria E A, Quiroga L B and Acosta J C. (2003). Ecología térmica de Leptodactylus ocellatus (Linnaeus, 1758) (Anura: Leptodactylidae) en los bañados de zonda, San Juan, Argentina. Cuadernos de Herpetología 17(1–2): 127–129.

Sanabria E A, Quiroga L B and Martino A L. (2011). Seasonal changes in the thermoregulatory strategies of Rhinella arenarum in the Monte desert, Argentina. Journal of Thermal Biology 36(1): 23–28. https://doi.org/10.1016/j.jtherbio.2010.10.002

Sanabria E A, Vaira M, Quiroga L B, Akmentins M S and Pereyra L C. (2014). Variation of thermal parameters in two different color morphs of a diurnal poison toad, Melanophryniscus rubriventris (Anura: Bufonidae). Journal of Thermal Biology 41: 1–5. https://doi.org/10.1016/j.jtherbio.2014.01.005

Sanabria E and Quiroga L. (2019). The body temperature of active desert anurans from hyper-arid environment of South America: The reliability of WorldClim for predicted body temperatures in anurans. Journal of Thermal Biology 85: 1–9. https://doi.org/10.1016/j.jtherbio.2019.102398

Scheffers B R, Edwards D P, Macdonald S L, Senior R A, Andriamahohatra L R, Roslan N, Rogers A, Haugaasen T, Wright P and Williams S E. (2017). Extreme thermal heterogeneity in structurally complex tropical rain forests. Biotropica 49(1): 35–44. https://doi.org/10.1111/btp.12355

Senior R A, Hill J K, González P, Goode L K and Edwars D P. (2017). A pantropical analysis of the impacts of forest degradation and conversion on local temperature. Ecology and Evolution 7(19): 7897–7908. https://doi.org/10.1002/ece3.3262

Soto Y, Suazo I, Urbina N, Marroquín J and Alvarado J. (2017). Efecto de los estadios sucesionales del bosque tropical seco sobre el microhábitat usado por Agalychnis dacnicolor (Anura: Phyllomedusidae) y Smilisca fodiens (Anura: Hylidae). Revista de Biología Tropical 65(2): 777–798. https://doi.org/10.15517/rbt.v65i2.24706

Taylor E, Diele L, Gangloff E, Hall J, Halpern B, Massey M, Rödder D, Rollinson N, Spears S, Sun B and Telemeco R. (2020). The thermal ecology and physiology of reptiles and amphibians: A user’s guide. Journal of Experimental Zoology 335(1): 13-44. https://doi.org/10.1002/jez.2396

Turriago J, Parra C and Bernal M. (2015). Upper thermal tolerance in anuran embryos and tadpoles at constant and variable peak temperatures. Canadian Journal of Zoology 93(4): 267–272. https://doi.org/10.1139/cjz-2014-0254