Genetic Diversity of White-spotted Rabbitfish (Siganus canaliculatus) on Different Seagrass Habitats in Inner Ambon Bay, Indonesia Based on Mitochondrial CO1 Sequences

Main Article Content

Husain Latuconsina
Nurlisa A. Butet
Ridwan Affandi
M. Mukhlis Kamal
Syamsul Bachry
Agus Alim Hakim

Abstract

This study aims to analyse the genetic diversity of Siganus canaliculatus in the Inner Ambon Bay (IAB) waters. DNA of S. canaliculatus specimens collected from IAB was extracted from tissues using a Tissue Genomic DNA Mini Kit, and partial CO1 genes were amplified using pair of universal primers. Genetic distances were determined by Kimura 2-parameter, and phylogenetic trees were constructed using the neighbour-joining method in MEGA 10.2.2 software. Arlequin software was used to analyse Fixation Index (Fst) and Analysis of Molecular Variance (AMOVA). There are three SNPs of S. canaliculatus from IAB that distinguish GenBank sequence data from S. canaliculatus. In Tanjung Tiram population group, contained three specific 677 (A), 679 (G), 703 (T) sites and two 693 (G), 714 (A) sites for the Nania population. Haplotype and nucleotide diversity of each population range from 0.000 to 1,000 and 0.000 to 0.004. Intra- and inter-population genetic differentiation were 21.19% dan 78.81%, respectively. Intra- and inter-population genetic distances were in range of 0.40–1.13 and 0.00–0.37, respectively. The pattern and direction of tidal currents as a link or barrier to spatial distribution and connectivity of S. canaliculatus larvae between seagrass habitats, as well as the presence of different anthropogenic pressures in each seagrass habitat, are thought to influence the genetic characteristics (genetic diversity, genetic variation, genetic differentiation and genetic distance) of S. canaliculatus populations in IAB waters. The results of this study provide information about the urgency of habitat-based fisheries management to support sustainable utilisation.

Article Details

How to Cite
Genetic Diversity of White-spotted Rabbitfish (Siganus canaliculatus) on Different Seagrass Habitats in Inner Ambon Bay, Indonesia Based on Mitochondrial CO1 Sequences. (2024). Tropical Life Sciences Research, 35(1), 275–293. https://doi.org/10.21315/tlsr2024.35.1.15
Section
Original Article

References

Akbar N, Zamani N P and Madduppa H H. (2014). Genetic diversity of yellowfin tuna (Thunnus albacares) from two populations in the Moluccas Sea, Indonesia. Depik 3(1): 65–73. https://doi.org/10.13170/depik.3.1.1304

Allen G R and Erdmann M V. (2012). Reef fishes of the East Indies. Vol. I–III. Perth, Australia: Tropical Reef Research, 1292 pp.

Ambo-Rappe R, Nessa M N, Latuconsina H and Lajus D L. (2013). Relationship between the tropical seagrass bed characteristics and the structure of the associated fish community. Open Journal of Ecology 3(5): 331–342. https://doi.org/10.4236/oje.2013.35038

Bachry S, Solihin D D, Rudhy G, Kadarwan S, and Butet N A. (2019). Genetic diversity of the Haliotis diversificolor squamata from Southern Coastal Java (Banten, Pangandaran and Alas Purwo) and Bali Based on Mitochondrial CO1 sequences. Tropical Life Sciences Research 30(3): 83–93. https://doi.org/10.21315/tlsr2019.30.3.6

Bachry S, Solihin D D, Rudhy G, Kadarwan S, and Butet N A. (2020). Filogeni populasi Haliotis squamata Reeve, 1846 dari Pantai Selatan Pulau Jawa dan Bali berdasarkan sekuen cytochrome B DNA mitokondria (Phylogenetic of Haliotis squamata Reeve, 1846 population from the Southern Coast of Java and Bali Island in Indonesia based on cytochrome B mitochondrial DNA sequence). Jurnal Ilmu dan Teknologi Kelautan Tropis 12(2): 585–595. https://doi.org/10.29244/jitkt.v12i2.30691

Bandelt H J, Forster P and Röhl A. (1999). Median-joining networks for inferring intraspecific phylogenies. Molecular Biology and Evolution 16(1): 37–48. https://doi.org/10.1093/oxfordjournals.molbev.a026036

Basit A, Putri M R and Tatipatta W M. (2012). Estimation of seasonal vertically integrated primary productivity in Ambon Bay using the depth-resolved, time-integrated production model. Marine Research in Indonesia 37(1): 47−56.

Bramandito A, Subhan B, Prartono T, Anggraini N P, Januar H I and Madduppa H H. (2018). Genetic diversity and population structure of Siganus fuscescens across urban reefs of Seribu Islands, Northern of Jakarta, Indonesia. Biodiversitas Journal of Biological Diversity 10(6): 1993−2002. https://doi.org/10.13057/biodiv/d190603

Evans S M, Dawson M, Dya J, Frid C L J, Gill M E, Pattiasina L A and Porter J. (1995). Domestic waste and TBT pollution in coastal areas of Ambon Island (Eastern Indonesia). Marine Pollution Bulletin 30(2): 109−115.

Excoffier L, Smouse P E and Quattro J M. (1992). Analysis of molecular variance inferred from metric distances among DNA haplotypes: Application to human mitochondrial DNA restriction data. Genetics 131: 479–491.

https://doi.org/10.1093/genetics/131.2.479

Fadli M, Radjawane I M and Susanna. (2014). Pemodelan hidrodinamika di perairan Teluk Ambon. In A S Atmadipoera, I Jaya, S M Natsir, N Hendriarti , B Herunadi, M P Patria, R Zuraida, K T Dewi, W Pranowo, T Prartono, et al. (eds.), Prosiding Pertemuan Ilmiah Nasional Tahunan X ISOI 2012. Jakarta: Ikatan Sarjana Oseanologi Indonesia (ISOI), 6–19.

Fisher R, Leis J M, Clark D L and Wilson S K. (2005). Critical swimming speeds of late-stage coral reef fish larvae: Variation within species, among species and between locations. Marine Biology 147: 1201−1212. https://doi.org/10.1007.s00227-005-0001-x

Gemilang W A, Rahmawan G A and Wishwa U J. (2017). Kualitas perairan Teluk Ambon dalam berdasarkan parameter fisika dan kimia pada musim peralihan I (Inner Ambon Bay water quality based physical and chemical parameters in transition season I). EnviroScienteae 13(1): 79–90. https://doi.org/10.20527/es.v13i1.3518

Grant W S and Bowen B W. (1998). Shallow population histories in deep evolutionary lineages of marine fishes: Insights from sardines and anchovies and lessons for conservation. Journal of Heredity 89(5): 415–426. https://doi.org/10.1093/jhered/89.5.415

Hajibabaei M, Smith M A, Janzen D H, Rodriguez J J, Whitfield J B and Hebert P D N. (2006). A minimalist barcode can identify a specimen whose DNA is degraded. Molecular Ecology 6: 959–964. https://doi.org/10.1111/j.1471-8286.2006.01470.x

Hebert P D N and Gregory T R. (2005). The promise of DNA barcoding for taxonomy. Systematic Biology 54(5): 852–859. https://doi.org/10.1080/10635150500354886

Hebert P D N, Ratnasingham S and de Waard J R. (2003). Barcoding animal life: Cytochrome c oxidase subunit 1 divergences among closely related species. Proceedings: Biological Sciences 270: S96–S99.

Honthaas C, Maury R C, Priadi B, Bellon H and Cotton J. (1999). The Plio–Quaternary Ambon arc, Eastern Indonesia. Tectonophysics 301(3–4): 261–281. https://doi.org/10.1016/S0040-1951(98)00227-3

Hsu T H and Gwo J C. (2017). Fine-scale genetic structure of rabbitfish, Siganus fuscescens, in Penghu Archipelago following a mass mortality event caused by extreme cold winter weather. Genes and Genomics 39: 645–652. https://doi.org/10.1007/s13258-017-0530-y

Hughes A R, Inouye B D, Johnson M T J, Underwood N and Vellend M. (2008). Ecological consequences of genetic diversity. Ecology Letters 11: 609–623. https://doi.org/10.1111/j.1461-0248.2008.01179.x

Huyghe F and Kochzius M. (2018). Sea surface currents and geographic isolation shape the genetic population structure of a coral reef fish in the Indian Ocean. PLoS ONE 13(3): e0193825. https://doi.org/10.1371/journal.pone.0193825

Ikhsani I Y, Abdul M S and Lekalette J D. (2016). Distribusi fosfat dan nitrat di Teluk Ambon bagian dalam pada monsun barat dan timur (Phosphate and nitrate distribution in inner Ambon Bay during northwest and southeast monsoon). Widyariset 2(2): 86–95. https://doi.org/10.14203/widyariset.2.2.2016.86-95 [Indonesia]

Indrawan M, Primack R B and Supriatna J. (2007). Biologi Konservasi (Conservation biology). Jakarta: Yayasan Obor Indonesia.

Irawan A and Nganro M N. (2016). Sebaran lamun di Teluk Ambon Dalam (Distribution of Seagrasses in Inner Ambon Bay). Jurnal Ilmu dan Teknologi Kelautan Tropis 8(1): 99–114. https://doi.org/10.29244/jitkt.v8i1.12499 [Indonesia]

Irmawati. (2016). Genetika populasi ikan (Fish population genetics). Yogyakarta: Andi Offset.

Kumar S, Stecher G, Li M, Knyaz C and Tamura K. (2018). MEGA X: Molecular evolutionary genetics analysis across computing platforms. Molecular Biolody and Evolution 35(6): 1547–1549. https://doi.org/10.1093/molbev/msy096

Latuconsina H, Affandi R, Kamal M M and Butet N A. (2020a). Distribusi spasial ikan baronang Siganus canaliculatus Park, 1797 pada habitat padang lamun berbeda di Teluk Ambon Dalam (Spatial distribution of white-spotted rabbitfish Siganus canaliculatus (Park, 1797) in diferrent seagrass beds habitat in Inner Ambon Bay). Jurnal Ilmu Dan Teknologi Kelautan Tropis 12(1): 89–106. https://doi.org/10.29244/jitkt.v12i1.27908

Latuconsina H, Affandi R, Kamal M M and Butet N A. (2020b). On the assessment of white-spotted rabbitfish (Siganus canaliculatus Park, 1797) stock in the Inner Ambon Bay, Indonesia. AACL Bioflux 13(4): 1827–1835.

Latuconsina H, Ambo-Rappe R and Burhanuddin A I. (2023). Ichthyofauna of tropical seagrass meadows: Biodiversity, threats, and their management. Yogyakarta. Gadjah Mada University Press.

Latuconsina H, Ambo-Rappe R and Nessa M N. (2013). Association of rabbit fish (Siganus canaliculatus Park, 1797) in the seagrass ecosystems in the Inner Ambon Bay. In C P H Simanjuntak (ed.), Proceedings of the National Fish Seminar VII. Indonesian Ichthyology Society, 123–137 [Indonesian].

Latuconsina H, Kamal, M M, Affandi R, and Butet N A. (2022). Growth and reproductive biology of white-spotted rabbitfish (Siganus canaliculatus) on different seagrass habitats in Inner Ambon Bay, Indonesia. Biodiversitas Journal of Biological Diversity 23(1): 273–285. https://doi.org/10.13057/biodiv/d230133

Li S, Cai W and Zhou B. (1993). Variation in morphology and biochemical genetic markers among populations of blunt snout bream (Megalobrama amblycephala). Aquaculture 111(1–4): 117–127.

Li W H and Graur D. (2000). Fundamentals of molecular evolution, 2nd ed. Sunderland: Sinauer Associates Inc,

Lin T and Liu L. (2008). Low levels of genetic differentiation among populations of the coral-inhabiting snail Coralliophila violacea (Gastropoda: Coralliophilidae) in regions of the Kuroshio and South China Sea. Zoological Studies Taipei 47(1): 17–24.

Madduppa H H, Margaretha M K, Bramandito A, Prartono T, Subhan B, Arafat D and Anggraini N P. (2019). Short communication: Intraspecific genetic diversity and population subdivision of rabbitfish (Siganidae: Siganus canaliculatus) in urbanized reefs of Jakarta Bay, Indonesia. Biodiversitas Journal of Biological Diversity 20(10): 2897–2902. https://doi.org/10.13057/biodiv/d201017

Mahmudi M, Lusiana E D, Herawati E Y and Seriholo L G. (2020). Environmental factors and seasonal effect on the potential harmful algae presence at Ambon Bay, Indonesia. Biodiversitas Journal of Biological Diversity 21(7): 3101–3107.

Manik N. (1998). Estimation of growth parameters and mortality of Rabbit fish (Siganus canaliculatus) in Inner Ambon Bay. Jurnal Perairan Maluku dan Sekitarnya 12: 55–63. [Indonesia]

Manullang C Y, Barends W, Polnaya D, Soamole A and Rehalat I. (2021). Marine litter and grading of the coastal areas of Ambon Bay, Indonesia. Jurnal Omni-Akuatika 17(2): 70–77.

Markert J A, Champlin D M, Gutjahr-Gobell R, Grear J S, Kuhn A, McGreevy T J and Nacci D E. (2010). Population genetic diversity and fitness in multiple environments. BMC Ecology and Evolution 10: 205. https://doi.org/10.1186/1471-2148-10-205

Martinez A S, Willoughby J R and Christie M R. (2018). Genetic diversity in fishes is influenced by habitat type and life-history variation. Ecology and Evolution 2018: 1–10. https://doi.org/10.1002/ece3.4661

Mukhopadhyay T and Bhattacharjee S. (2016). Genetic diversity: Importance and measurements. In A H Mir and N A Bhat (eds.), Conserving biological diversity: A multiscaled approach. New Delhi, India: Research India Publications, 251–295.

Nei M. (1987). Molecular evolutionary genetics. New York: Columbia University Press.

Noya Y A, Kalay D E, Purba M, Koropitan A F and Prartono T. (2019). Modelling baroclinic circulation and particle tracking in Inner Ambon Bay. IOP Conference Series: Earth and Environmental Science 339: 012021. https://doi.org/10.1088/1755-1315/339/1/012021

Noya Y A, Purba M, Koropitan A F and Prartono P. (2016a). Modeling the barotropic circulation on Inner Ambon Bay. International Journal of Oceans and Oceanography 10(2): 265–286.

Noya Y A, Purba M, Koropitan A F and Prartono P. (2016b). Cohesive sediment transport modeling on Inner Ambon Bay. Journal of Tropical Marine Science and Technology 8(2): 671–687. https://doi.org/10.29244/jitkt.v8i2.15834

Nurfitri S and Putri M R. (2019). Study on water mass exchange at Ambon Bay using trajectory model: Circulation of one tidal cycle. IOP Conference Series: Journal of Physics: Conference Series 1127(2019): 012039. https://doi.org/10.1088/1742-6596/1127/1/012039

Pello F S, Adiwilaga E M, Huliselan N V and Damar A. (2014). Pengaruh musim terhadap beban masukkan nutrien di Teluk Ambon Dalam (Effect of seasonal on nutrient load input the Inner Ambon Bay). Jurnal Bumi Lestari 14(1): 63–73.

Pownall J M, Hall R and Watkinson I M. (2013). Extreme extension across Seram and Ambon, eastern Indonesia: Evidence for Banda slab rollback. Solid Earth 4: 277– 314. https://doi.org/10.5194/se-4-277-2013

Putra H S and Pratomo D G. (2019). Analysis of sediment flow and transport using 3-dimensional hydrodynamic modeling (Case study: Ambon Bay, Ambon City, Maluku). Journal of Eng ITS 8(2): 124–129. [Indonesian]

Rahmawan G A, Gemilang W A, Wisha U J, Shiauddin R and Ondara K. (2019). Estimation of sediment distribution based on bathymetry alteration (204-2016) in the Inner Ambon Bay of Ambon, Maluku, Indonesia. Jurnal Segara 15(2): 67–78. https://doi.org/10.15578/segara.v15i2.6956

Rozas, J. (2009). DNA Sequence Polymorphism Analysis Using DnaSP. In D Posada. (Ed.), Bioinformatics for DNA sequence analysis. New Jersey: Humana Press, 337–350. https://doi.org/10.1007/978-1-59745-251-9_17

Sahabuddin, Burhanuddin A I, Tuwo A and Malina A C. (2019). Genetic variation of rabbit fish (Siganus canaliculatus Park, 1797) in the waters of Bone Bay and Makassar Strait. International Journal of Scientific and Technology Research 6(6): 171–181. https://doi.org/10.32628/IJSRST196620

Salamena G G, Whinney J C, Heron S F and Ridd P V. (2021). Internal tidal waves and deep-water renewal in a tropical fjord: Lessons from Ambon Bay, eastern Indonesia. Estuarine, Coastal and Shelf Science 253(2021): 107291. https://doi.org/10.1016/j.ecss.2021.107291

Sambrook J, Fritsch E R and Maniatis T. (1989). Molecular cloning: A laboratory manual, 2nd ed. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press.

Saputra F R T and Lekalette J D. (2016). Water mass dynamics in Ambon Bay. Widyariset 2(2): 143–152. https://doi.org/10.14203/widyariset.2.2.2016.143-152

Selano D A J, Adiwilaga E M, Dahuri R, Muchsin I and Effendi H. (2009). Sebaran spasial luasan area tercemar dan analisis beban pencemar bahan organik pada perairan Teluk Ambon Dalam (Spatial distribution of pollution areas and analysis of pollution load of organic matter in Inner Ambon Bay waters). Torani Journal of Fisheries and Marine Science 19(2): 96–106.

Soewardi. (2007). Pengelolaan keragaman genetik suberdaya perikanan dan kelautan. Indonesia: Department of Aquatic Resources Management, Bogor Agricultural Institute.

Swain D P, Hutchings J A and Foote C. (2004). Environmental and genetic influences on stock identification characters. In S X Cadrin, L A Kerr and S Mariani (eds.), Stock identification methods applications in fishery science. San Diego, CA: Elsevier Academic Press, 45–85.

Toro M and Caballero A. (2005). Characterization and conservation of genetic diversity in subdivided populations. Philosophical Transactions of the Royal Society of London Series B-Biological Sciences 360: 1367–1378. https://doi.org/10.1098/rstb.2005.1680

Vogelstein B and Gillespie D. (1979). Preparative and analytical purification of DNA from agarose. Proceedings of the National Academy of Sciences of the United States of America 76: 615.

Ward R D, Costa F O, Holmes B H and Steinke D. (2008). DNA barcoding of shared fish species from the North Atlantic and Australasia: Minimal divergence for most taxa, but Zeus faber and Lepidopus caudatus each probably constitute two species. Aquatic Biology 3(1): 71–78. https://doi.org/10.3354/ab00068

Ward R D, Zemlak T S, Innes B H, Last P R and Hebert P D N. (2005). DNA barcoding Australia’s fish species. Philosophical Transactions of the Royal Society of London Series B – Biological Sciences 360: 1847–1857. https://doi.org/10.1098/rstb.2005.1716

Woodland D J (2001). Siganidae, Rabbitfishes (spinefoots). In K E Carpenter and V Niem (eds.), FAO species identification guide for fishery purposes, The living marine resources of the Western Central Pacific, Vol. 6, Bony fishes part 4 (Labridae to Latimeriidae), estuarine crocodiles. Rome: FAO, 3627–3650.