New Insight into Nucleotide Changes on Irradiated Bactrocera dorsalis (Hendel), A Pest of Horticultural Importance

Main Article Content

Suhana Yusof
Nurul Wahida Othman
Ahmad Zainuri Mohamad Dzomir
Muhamad Azmi Mohammed
Ameyra Aman-Zuki
Salmah Yaakop

Abstract

Bactrocera dorsalis (Hendel) is a major quarantine pest species infesting most of the tropical fruits. Its infestation had significantly reduced and disrupted the export market trade, thus, very crucial to be controlled during the preharvest and postharvest. One of the most sustainable control methods is by using the radiation technique to reduce the pest population, thus curbing the spread of this pest to new geographical areas. The objective of this study was to measure the nucleotide changes in B. dorsalis (larval, pupal and adult stages) which had been irradiated with 50 to 400 Gray, using Gamma Cell Biobeam GM8000 irradiator with Cesium-137 source at the Malaysian Nuclear Agency, Selangor, Malaysia. Data from the treated samples (with and without morphological changes) were analysed using cytochrome oxidase subunit I (COI). The alignment of 59 sequences resulted in 0.92% variables with only four characters that were parsimony informative, and six sites (30, 60, 234, 282, 483 and 589) which had nucleotide changes, but had not been translated to another protein. Low polymorphism was presented on the sample groups, with only four haplotypes, but with high diversity value (Hd) = 0.5885. The phylogeny trees formed soft polytomy in both trees [neighbour joining (NJ) and maximum parsimony (MP)] presenting a mixture of individuals but did not show any significant difference between treatments. This finding concluded that low mutation had occurred on the treated B. dorsalis and this information is very valuable in getting new insight on the survival of B. dorsalis in the horticulture industry. 

Article Details

How to Cite
New Insight into Nucleotide Changes on Irradiated Bactrocera dorsalis (Hendel), A Pest of Horticultural Importance. (2024). Tropical Life Sciences Research, 35(2), 289–307. https://doi.org/10.21315/tlsr2024.35.2.14
Section
Original Article

References

Abd-El-Samie E M and El Fiky Z A. (2011). Molecular phylogeny and identification of the peach fruit fly, Bactrocera zonata, established in Egypt. Journal of Insect Science 11(177): 1–11. https://doi.org/10.1673/031.011.17701

Aketarawong N, Bonizzoni M, Thanaphum S, Gomulski L M, Gasperi G, Malacrida A R and Gugliemino C R. (2007). Inference on the population structure and colonization process of the invasive oriental fruit fly, Bactrocera dorsalis (Hendel). Molecular Ecology 16: 3522–3532. https://doi.org/10.1111/j.1365-294X.2007.03409.x

Altschul S F, Gish Miller W, Myers E W and Lipman D J. (1990). Basic local alignment search tool. Journal of Molecular Biology 215: 403–410. https://doi.org/10.1016/S0022-2836(05)80360-2

Armstrong K F and Ball S L. (2005). DNA barcodes for biosecurity: Invasive species identification. Philosophical Transactions of the Royal Society 360: 1813–1823. https://doi.org/10.1098/rstb.2005.1713

Arthur V, Machi A and Mastrangelo A. (2015). Ionizing radiations in entomology. In: Mitsuru N. (ed.). Evolution of ionizing radiation research. London, United Kingdom: IntechOpen, 213–234.

Badri I, Osman M S and Salleh M M. (2008). Serangga perosak buah-buahan tropika Malaysia. Kuala Lumpur: Institut Penyelidikan dan Kemajuan Pertanian Malaysia (MARDI).

Badrulisham A S, Kageyama D, Halim M, Aman-Zuki A, Masri M M, Ahmad S N, Md. Zain B M and Yaakop S. (2021). New insights into the phylogeography of the oil palm pest, Metisa plana towards its management control. Journal of Oil Palm Research 34(3): 427–438. https://doi.org/10.21894/jopr.2021.0050

Bustos-Griffin E, Hallman G J and Griffin R L. (2015). Phytosanitary irradiation in ports of entry: A practical solution for developing countries. International Journal of Food Science and Technology 50: 249–255. https://doi.org/10.1111/ijfs.12676

CABI (Commonwealth Agricultural Bureau International) (2016). Invasive species compendium: Bactrocera dorsalis (oriental fruit fly) [online]. http://www.cabi.org/isc/datasheet/17685 [accessed 10 January 2023].

Cai J, Yang H, Shi S, Zhong G and Yi X. (2018). Behavioral, morphological, and gene expression changes induced by 60Co-? ray irradiation in Bactrocera tau (Walker). Frontiers in Physiology 9: 1–10. https://doi.org/10.3389/fphys.2018.00118

Carlin J L. (2011). Mutations are the raw materials of evolution. Natural Sciences Education 3(10): 10.

Chown S L and Terblanche J S. (2006). Physiological diversity in insects: Ecological and evolutionary contexts. Advances in Insect Physiology 33: 50–152. https://doi.org/10.1016/S0065-2806(06)33002-0

Chua T H. (2010). Fruit flies (Diptera: Tephritidae) from Malaysia and Brunei Darussalam: New species and records. Florida Entomologist 93(3): 483–488. https://doi.org/10.1653/024.093.0401

Chua T H, Tan Y L, Harikrishna J and Lim S H. (2009). Phylogenetic relationships of Malaysian Bactrocera species based on mitochondrial cytochrome oxidase I sequences and morphological characters (Tephritidae: Diptera). Malayan Nature Journal 61(1): 34–47.

Draz K A, Tabikha R M, El-Aw M A and Darwish H F. (2016). Impact of gamma radiation doses on sperm competitiveness, fecundity and morphometric characters of peach fruit fly Bactrocera zonata (Saunders) (Diptera: Tephiritidae). Journal of Radiation Research and Applied Sciences 9: 352–362. https://doi.org/10.1016/j.jrras.2016.05.004

Drew R A and Hancock D L. (1994). The Bactrocera dorsalis complex of fruit flies (Diptera: Tephritidae: Dacinae) in Asia. Bulletin of Entomological Research Supplement Series 2: 1–68. https://doi.org/10.1017/S1367426900000278

Drew R A and Romig M C. (2013). Tropical fruit flies (Tephritidae: Dacinae) of South-East Asia: Indomalaya to North-West Australasia. Wallingford, Oxfordshire: CABI.

Duyck P F, David P and Quilici S. (2004). A review of relationships between interspecific competition and invasions in fruit flies (Diptera: Tephritidae). Journal of Economic Entomology 29: 511–520. https://doi.org/10.1111/j.0307-6946.2004.00638.x

Felsenstein J. (1985). Confidence limits on phylogenies: An approach using the bootstrap. Evolution 39: 783–791. https://doi.org/10.1111/j.1558-5646.1985.tb00420.x

Folmer O, Black M and Hoeh W. (1994). DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Molecular Marine Biology and Biotechnology 3: 294–299.

Hallman G J. (2004). Ionizing irradiation quarantine treatment against oriental fruit moth (Lepidoptera: Tortricidae) in ambient and low oxygen atmospheres. Journal of Economic Entomology 97: 824–827. https://doi.org/10.1093/jee/97.3.824

. (2012). Generic phytosanitary irradiation treatments. Radiation Physics and Chemistry 81: 861–866. https://doi.org/10.1016/j.radphyschem.2012.03.010

Heather N W and Hallman G J. (2008). Pest management and phytosanitary trade barriers. Wallingford, Cambridge: CABI.

Hebert P D N, Cywinska A, Ball S L and De Waard J R. (2003). Biological identifications through DNA barcodes. Proceedings of the Royal Society of London. Series B: Biological Sciences 270(1512): 313–321. https://doi.org/10.1098/rspb.2002.2218

Hillis D M, Moritz C and Mable B K. (1996). Molecular systematics (2nd Ed.). Sunderland: Sinuauer Associates.

IAEA (International Atomic Energy Agency) (2002a). Natural and induced radioactivity in food. IAEA-TECDOC-1287. Vienna, Austria: IAEA.

. (2002b). Dosimetry for food irradiation. Technical Reports Series Number 409. IAEA, Vienna, Austria.

Kowal K, Tkaczyk A, Pierzcha?a M, Bownik A and ?laska B. (2020). Identification of mitochondrial DNA (Numts) in the nuclear genome of Daphnia magna. Internasional Journal of Molecular Sciences 21(22): 8725. https://doi.org/10.3390/ijms21228725

Lance D R and McInnis D O. (2005). Biological basis of the sterile insect technique. In: Dyck V A, Hendrichs J and Robinson A S. (eds.). Sterile insect technique: Principles and practice in area-wide integrated pest management. Dordrecht, The Netherlands: Springer, 69–94.

Librado P and Rozas J. (2009). DnaSP v5: A software for comprehensive analysis of DNA polymorphism data. Bioinformatics 25(11): 1451–1452. https://doi.org/10.1093/bioinformatics/btp187

Lunt D H, Zhang D X, Szymura J M and Hewltt O M. (1996). The insect cytochrome oxidase I gene: Evolutionary patterns and conserved primers for phylogenetic studies. Insect Molecular Biology 5(3): 153–165. https://doi.org/10.1111/j.1365-2583.1996.tb00049.x

Muraji M and Nakahara S. (2002). Discrimination among pest species of Bactrocera (Diptera: Tephritidae) based on PCR-RFLP of the mitochondrial DNA. Applied Entomology and Zoology 37: 437–446. https://doi.org/10.1303/aez.2002.437

Paithankar J G, Deeksha K and Patil R K. (2017). Gamma radiation tolerance in different life stages of the fruit fly Drosophila melanogaster. International Journal of Radiation Biology 93(4): 440–448. https://doi.org/10.1080/09553002.2016.1266056

Ratnasingham S and Hebert P D N. (2007). BOLD: The barcode of life data system (http://www.barcodinglife.org). Molecular Ecology Resources 7(3): 355–364. https://doi.org/10.1111/j.1471-8286.2007.01678.x

Rizk S A, Abdalla R S and Sayed R M. (2017). Changes occurred in the testes and DNA pattern of males wax moth (Galleria mellonella) first generation as a result of irradiation of their parents. Bulletin of Entomological Research 107(4): 493–498. https://doi.org/10.1017/S0007485316001139

Robinson A S. (2002). Mutations and their use in insect control. Mutation Research 511(2): 113–132. https://doi.org/10.1016/s1383-5742(02)00006-6

Rosetti N and Remis M I. (2012). Spatial genetic structure and mitochondrial DNA phylogeography of Argentinean populations of the grasshopper Dichroplus elongatus. PLoS ONE 7(7): e40807. https://doi.org/10.1371/journal.pone.0040807

Schutze M K, Mahmood K, Pavasovic A, Bo W, Newman J, Clarke A R, Krosch M N and Cameron S L. (2015). One and the same: Integrative taxonomic evidence that the African invasive fruit fly Bactrocera invadens (Diptera: Tephritidae), is the same species as the oriental fruit fly Bactrocera dorsalis. Systematic Entomology 40: 472–486. https://doi.org/10.1111/syen.12114

Shariff S, Ibrahim N J, Md-Zain B M, Idris A B, Suhana Y, Roff M N and Yaakop S. (2014). Multiplex PCR in determination of Opiinae parasitoids of fruit flies, Bactrocera sp., infesting star fruit and guava. Journal of Insect Science 14(7): 1–7. https://doi.org/10.1093/jis/14.1.7

Sharma V, Hecker N, Roscito J G, Foerster L, Langer B E and Hiller M. (2018). A genomics approach reveals insights into the importance of gene losses for mammalian adaptations. Nature Communications 9(1): 1–9. https://doi.org/10.1038/s41467-018-03667-1

Shi W, Kerdelhue C and Ye H. (2005). Population genetics of the oriental fruit fly, Bactrocera dorsalis (Diptera: Tephritidae), in Yunnan (China) based on mitochondrial DNA sequences. Environmental Entomology 34: 977–983. https://doi.org/10.1603/0046-225X-34.4.977

Shi W, Kerdelhue C and Ye H. (2010). Population genetic structure of the oriental fruit fly, Bactrocera dorsalis (Hendel) (Diptera: Tephritidae) from Yunnan province (China) and nearby sites across the border. Genetica 138: 377–385. https://doi.org/10.1007/s10709-009-9429-0

Shi W, Kerdelhue C and Ye H. (2012). Genetic structure and inferences of potential source areas for Bactrocera dorsalis (Hendel) based on mitochondrial and microsatellite markers. PLoS ONE 7: e37083. https://doi.org/10.1371/journal.pone.0037083

Stephens A E A, Kriticos D J and Leriche A. (2007). The current and future potential geographical distribution of the oriental fruit fly, Bactrocera dorsalis (Diptera: Tephritidae). Bulletin of Entomological Research 97: 369–378. https://doi.org/10.1017/S0007485307005044

Suhana Y, Mohd Shamsudin O, Sulaiman Z, Ahmad Zainuri M D, Hasan S and Yaakop S. (2018). Effects of gamma irradiation on egg hatchability, pupation, and adult emergence of the immature stages of the oriental fruitfly, Bactrocera dorsalis (Hendel) (Diptera: Tephritidae) from Malaysia. Serangga 23: 259–267.

Suman S, Khan Z, Zarin M, Chandna S and Seth R K. (2015). Radio resistant Sf9 insect cells display efficient antioxidant defence against high dose ?-radiation. Internasional Journal of Radiation Biology 91: 732–741. https://doi.org/10.3109/09553002.2015.1054958

Swofford D L. (2002). Phylogenetic analysis using parsimony (and other methods). Version 4. Sunderland, MA: Sinauer Associates.

Syarifah-Zulaikha S A, Halim M, Aman-Zuki A and Yaakop S. (2021). Haplotype analysis and phylogeny of Oryzaephilus surinamensis populations from four regions in Peninsular Malaysia. Journal of Tropical Agriculture 44(3): 565–582. https://doi.org/10.47836/pjtas.44.3.04

USDA-APHIS. (2016). Department of Agriculture, Animal and Plant Health Inspection Service treatment manual [online]. https://www.aphis.usda.gov/sites/default/files/treatment.pdf [accessed 10 January 2023].

Vargas R I, Leblanc L, Putoa R and Eitam A. (2007). Impact of introduction of Bactrocera dorsalis (Diptera: Tephritidae) and classical biological control releases of Fopius arisanus (Hymenoptera: Braconidae) on economically important fruit flies in French Polynesia. Journal of Economic Entomology 100(3): 670–679.

Vargas R I, Miyashita D and Nishida T. (1984). Life history and demographic parameters of three laboratory-reared tephritids (Diptera: Tephritidae). Annals of the Entomological Society of America 77(6): 651–656. https://doi.org/10.1093/aesa/77.6.651

Wan X W, Nardi F, Zhang B and Liu Y H. (2011). The oriental fruit fly, Bactrocera dorsalis, in China: Origin and gradual inland range expansion associated with population growth. PLoS ONE 6: e25238. https://doi.org/10.1371/journal.pone.0025238

Ward C M, Aumann R A, Whitehead M A, Nikolouli K, Leveque G, Gouvi G, Fung E, Reiling S J, Djambazian H, Hughes M A and Whiteford S. (2021). White pupae phenotype of tephritids is caused by parallel mutations of a MFS transporter. Nature Communications 12(1): 1–12. https://doi.org/10.1038/s41467-020-20680-5

Yaakop S, Ibrahim N J, Shariff S and Md. Zain B M. (2015a). Molecular clock analysis on five Bactrocera species flies (Diptera: Tephritidae) based on combination of COI and NADH sequences. Oriental Insects 49(1–2): 150–164. https://doi.org/10.1080/00305316.2015.1081421

Yaakop S, Shariff S, Ibrahim N J, Md-Zain B M, Yusof S and Mohamad Jani N. (2015b). Dualtarget detection using simultaneous amplification of PCR in clarifying interaction between Opiinae species (Hymenoptera: Braconidae) associated with Bactrocera spp. (Diptera: Tephritidae) infesting several crops. Arthropod-Plant Interactions 9(2): 121–131. https://doi.org/10.1007/s11829-015-9355-2

Yusof S, Mohamad Dzomir A Z and Yaakop S. (2019). Effect of irradiating puparia of oriental fruit fly (Diptera: Tephritidae) on adult survival and fecundity for sterile insect technique and quarantine purposes. Journal of Economic Entomology 112(6): 2808–2816. https://doi.org/10.1093/jee/toz217

Zainon O and Lebai Juri M. (2000). The potential of food irradiation in Malaysia. Bangi, Malaysia: Malaysian Institute for Nuclear Technology Research.