Recovery of Petroleum Brine-Contaminated Soil by Eleocharis sp. in a Tropical Marshland

Main Article Content

Verónica Isidra Domínguez-Rodríguez
Francisco J. Guzmán-Osorio
Liliana Hernández-Acosta
Rodolfo Gómez-Cruz
J. Edmundo Rosique-Gil
Randy H. Adams

Abstract

Almost all research on natural attenuation and phytoremediation of sites contaminated with briny produced water has been conducted in temperate climates, however, there is a dearth of information on the use of tropical species for this purpose. It is within this context, that we investigated a spontaneously growing hypersaline spikerush from a contaminated site in southeast Mexico, to determine its soil salinity limits, the relationship between soil organic matter and salinity, and for preliminary documentation of floristic succession with Typha sp. for phytoremediation o f brine s pills. Soil was sampled (0 cm–20 cm) three times between 2018–2021, focusing on the end of the dry season (most critical period). The species tentatively identified as Eleocharis mutata was tolerant to soil hypersalinity (Electrical Conductivity: 125 dS/m) and appeared to generate a cyclic process of succession to recover areas with soil salinity levels higher than it could otherwise tolerate. A salinity gradient was found between the most heavily contaminated part of the site (“kill zone”, > 212 dS/m), the first Eleocharis sp. individuals (125 dS/m), slowly advancing through the main spikerush stand, and finally into a cattail stand (< 8.02 dS/m). Similarly, an inverse relationship between Soil Organic Matter content and soil salinity was observed. This is the first time this species has been identified with a brine spill, its salinity limits determined, and investigated for use in phytoremediation of this kind.

Article Details

How to Cite
Recovery of Petroleum Brine-Contaminated Soil by Eleocharis sp. in a Tropical Marshland. (2024). Tropical Life Sciences Research, 35(2), 141–165. https://doi.org/10.21315/tlsr2024.35.2.7
Section
Original Article

References

Adams Schroeder R H, Domínguez Rodríguez V I and Vinalay Carrillo L. (2002). Evaluation of microbial respiration and ecotoxicity in contaminated soils representative of the petroleum producing region of southeastern Mexico. Terra Latinomamericana 20(3): 253–265.

Adams R H, Zavala-Cruz J and Morales-García F. (2008). Concentración residual de hidrocarburos en suelo del trópico II: Afectación a la fertilidad y su recuperación. Interciencia 33(7): 483–489. http://ve.scielo.org/scielo.php?script=sci_arttext&pid=S0378-18442008000700005&lng=es&nrm=iso

Adham S, Hussain A, Minier Matar J, Janson A and Gharfeh S. (2013). Screening of advanced produced water treatment technologies: Overview and testing results. IDA Journal of Desalination and Water Reuse 5(2): 75–82. https://doi.org/10.1179/2051645213Y.0000000009

Amakiri K T, Canon A R, Molinari M and Athanasios Angelis-Dimakis A. (2022). Review of oilfield produced water treatment technologies. Chemosphere 298: 34064. https://doi.org/10.1016/j.chemosphere.2022.134064

Angelo C L, Rosen D J and Lange J J. (2020). Eleocharis mutata (cyperaceae), New to the flora of Florida, U.S.A. Journal of the Botanical Research Institute of Texas 14(2): 405–410. https://doi.org/10.17348/jbrit.v14.i2.1018

Barba-Macías E, Alva-Juárez M A and Calva-Benítez L G. (2013). Guía ilustrada para la identificación de plantas acuáticas en humedales de Tabasco (1st Ed.). Tabasco, México: ECOSUR.

Brito-Marques A A G, Osório F T, Lira C R, Nuto N G, Espíndola R R, De Andrade M A J and Otero X L. (2014). Hypersaline tidal flats (apicum ecosystems): The weak link in the tropical wetlands chain. Environmental Reviews 22(2): 99–109. https://doi.org/10.1139/er-2013-0026

CONABIO. (2009). Distichlis spicata (L.) Greene, Zacate salado, ficha (fact sheet). Comisión Nacional para el Conocimiento y Uso de la Biodiversidad (Mexico). http://www.conabio.gob.mx/malezasdemexico/poaceae/distichlis-spicata/fichas/ficha.htm. (Accessed on 12 June 2023)

Danforth C, Chiu, W A, Rusyn I, Schultz K, Bolden A, Kwiatkowski C and Craft E. (2020). An integrative method for identification and prioritization of constituents of concern in produced water from onshore oil and gas extraction. Environment Internasional 134: 1–14. https://doi.org/10.1016/j.envint.2019.105280

Delattre E, Techer I, Reneaud B, Verdoux P, Laffont-Schwob I and Prohin P. (2022). Chloride accumulation in aboveground biomass of three macrophytes (Phragmites australis, Juncus maritimus, and Typha latifolia) depending on their growth stages and salinity exposure: Application for Cl?removal and phytodesalinization. Environmental Science and Pollution Research 29(23): 35284–35299. https://doi.org/10.1007/s11356-021-17591-3

Ding Z, Kheir A M S, Ali M G M, Ali O B and He Z. (2020). The integrated effect of salinity, organic amendments, phosphorus fertilizers, and deficit irrigation on soil properties, phosphorus fractionation and wheat productivity. Scientific Reports 10: 2736. https://doi.org/10.1038/s41598-020-59650-8

Dornbusch M J, Limb R F, Tomlinson H A K, Daigh A L M and Sedivec K K. (2020). Evaluation of soil treatment techniques on remediated brine spill sites in semiarid rangelands. Journal of Environmental Management 260: 1–10. https://doi.org/10.1016/j.jenvman.2020.110100

Duiker S J. (2002). Diagnosing soil compaction using a penetrometer (Soil compaction tester). Agronomy Facts No. 73. The Pennsylvania State University. https://extension.psu.edu/downloadable/download/sample/sample_id/586

Gamwo I K, Azam H M, Baled H O. (2022). Produced water treatment technologies: An overview. U.S. Department of Energy, Office of Scientific and Technical Information, 34 pp. https://doi.org/10.1201/9781003091011-1

García-López E, Zavala-Cruz J and Palma-López D J. (2006). Caracterización de las comunidades vegetales en un área afectada por derrames de hidrocarburos. Terra Latinoamericana 24(1): 17–26. http://www.redalyc.org/articulo.oa?id=57311494003

Gerrard S, Farrell R E and Knight J D. (2005). Phytoremediation of brine-affected soil with salt-tolerant plants: A screening study. Department of Soil Science, University of Saskatchewan, Saskatoon, SK S7N 5A8.

GBIF (Global Biodiversity Information Facility). (n.d.). Search occurrences of Machaerium falciforme Rudd. https://www.gbif.org/occurrence/gallery?taxon_key=5354983 (accessed on 6 December 2021).

Jesus J M, Danko A S, Fiúza A and Borges M-T. (2015). Phytoremediation of salt-affected soils: A review of processes, applicability, and the impact of climate change. Environmental Science and Pollution Research 22: 6511–6525. https://doi.org/10.1007/s11356-015-4205-4

IUSS Working Group WRB. (2022). World reference base for soil resources. Internasional soil classification system for naming soils and creating legends for soil maps (4th Ed.). Vienna, Austria: International Union of Soil Sciences (IUSS), 236 pp.

Kartesz J T. (2015). The Biota of North America Program (BONAP). Climate types and related map samples contained within BONAP’s Floristic synthesis. http://www.bonap.org/Climate%20Maps/climate48shadeA.png (accessed on 06 December 2021).

Lassalle G, Credoz A, Hédacq R, Bertoni G, Dubucq D, Fabre S and Elger A. (2019). Estimating persistent oil contamination in tropical region using vegetation indices and random forest regression. Ecotoxicology and Environmental Safety 184: 109654. https://doi.org/10.1016/j.ecoenv.2019.109654

Mao X, Yang Y, Guan P, Geng L, Ma L, Di H, Liu W and Li B. (2022). Remediation of organic amendments on soil salinization: Focusing on the relationship between soil salts and microbial communities. Ecotoxicology and Environmental Safety (239): 113616. https://doi.org/10.1016/j.ecoenv.2022.113616

Newell C J and Connor J A. (2006). Strategies for addressing salt impacts of produced water releases to plants, soil, groundwater. American Petroleum Institute Publication No. 4758. https://www.gsienv.com/wp-content/uploads/2021/04/5_API-Brine_Guide.pdf

OCC (2021). Guidelines for responding to and remediating new or historic brine spills. Oklahoma: Oklahoma Corporation Commission. https://oklahoma.gov/content/dam/ok/en/occ/documents/og/guidelines-for-responding-to-and-remediating-newor-historic-brine-spills.pdf

Palchetti M V, Reginato M, Llanes A, Hornbacher J, Papenbrock J, Barboza G E, Luna V and Cantero J J. (2021). New insights into the salt tolerance of the extreme halophytic species Lycium humile (Lycieae, Solanaceae). Plant Physiology and Biochemistry (163): 166–177. https://doi.org/10.1016/j.plaphy.2021.03.054

Palma-Silva C, Albertoni E F A and Esteves F A. (2000). Eleocharis mutata (L.) Roem. et Schult. Subject to drawdowns in a tropical coastal lagoon, State of Río de Janeiro, Brazil. Plant Ecology 148: 157–164. https://doi.org/10.1023/A:1009823014111

Passago S, Kaewhao S, Sombatyota C, Leamsingkorn W, Kurukod J and Santiboon T T. (2020). Improvement of soil salinity with local different organic materials for soil quality suitable through agricultural plant growth. Systematic Reviews in Pharmacy 11(2): 736–748.

Rosen D J and Jones S D. (2004). Eleocharis mutata (Cyperaceae) new to the flora of North America north of México. SIDA, Contribution to Botanica 21(2): 1153–1160. https://www.jstor.org/stable/41968365

Ruíz-Álvarez O, Arteaga-Ramírez O, Vázquez-Peña M A, Ontiveros Capurata R E and López-López R. (2012). Balance hídrico y clasificación climática del estado de Tabasco, México. Universidad y Ciencia 28(1): 1–14.

SEMARNAT (2005). Norma Oficial Mexicana NOM-143-SEMARNAT-2003, que establece las especificaciones ambientales para el manejo de agua congénita asociada a hidrocarburos. Diario Oficial de la Federación. https://biblioteca.semarnat.gob.mx/janium/Documentos/Ciga/agenda/PPD02/DO561.pdf (accessed on 16 August 2022).

. (2002). Norma Oficial Mexicana NOM-021-SEMARNAT-2000, que establece las especificaciones de fertilidad, salinidad y clasificación de suelos, estudio, muestreo y análisis. Diario Oficial de la Federación. 1–85. https://biblioteca.semarnat.gob.mx/janium/Documentos/Ciga/libros2009/DO2280n.pdf (accessed on 16 August 2022).

Tecnologías Ambientales Alemanas/BAUER Resources GmbH. (2015). Optimization Test for Treatment of Produced Water in Dos Bocas Marine Terminal (TMDB). Paraíso, Tabasco, Mexico. July 2015. Unpublished Report.

Zavala Cruz J, Palma-López D J, Adams Schroeder R H. (1999). Anexo 1: Descripción y cartografía de unidades geomórficas y suelos de las plantaciones y su área de influencia [Annex 1: Description and mapping of geomorphic units and soils of the plantations and their area of influence]. In Adams Schroder R H, Castillo Acosta O, Zavala Cruz J and Palma-López D J. (eds.), Recuperación con mangle blanco (Laguncularia racemosa) de áreas impactadas por hidrocarburos y su manejo como agrosilvo-ecosistema en la zona costera de Huimanguillo y Cárdenas, Tabasco. Mexico: Juárez Autonomous University of Tabasco.