Investigation of Antioxidant and Antimicrobial Properties of Sunda Porcupine’s (Hystrix javanica, F.Cuvier 1823) Quills Ethanolic Crude Extract
Main Article Content
Abstract
The Sunda porcupine (Hystrix javanica, F.Cuvier, 1823) is a rodent-mammal species native to Indonesia and is utilised in traditional medicine for the treatment of various ailments. Some ethnic communities in Indonesia have traditional beliefs regarding Sunda porcupine’s quills, which are thought to relieve back pain and toothache. Despite this traditional knowledge, there is limited scientific research on the topic. The aim of this study was to identify active compound in an ethanolic crude extract of Sunda porcupine’s quills, and to evaluate its antioxidant and antimicrobial properties. The antioxidant activity was evaluated using 1,1-diphenyl-2-picrylhydrazyl (DPPH)-free radical scavenging assay while the antimicrobial activity was evaluated through microdilution resazurin assay. The total phenolic and flavonoid contents were also determined to support the antioxidant properties. The active compounds were identified using gas chromatography-mass spectrophotometer (GCMS) with the National Institute of Standards and Technology (NIST-11) library. The result showed that the extract possesses antioxidant properties (IC50 138.93 ?g/mL) and antimicrobial properties against Escherichia coli (E. coli), Staphylococcus aureus (S. aureus), Bacillus subtilis (B. subtilis), Pseudomonas aeruginosa (P. aeruginosa) and Candida albicans (C. albicans) (IC50 range 0.40 mg/mL–33.05 mg/mL). Total phenolic content (TPC) and total flavonoid content (TFC) were 27.29 ± 2.20 mgGAE/g and 27.09 ± 1.66 mgQE/g, respectively. A total of 24 active compounds from the crude extract were identified. As much as five compounds serve as antioxidant agents, including: butylated hydroxytoluene; eicosane; 1-iodo-hexadecane; methyl ester hexadecanoic acid; and L-(+)-ascorbic acid 2,6-dihexadecanoate. Furthermore, as much as 11 compounds serve as antimicrobial agents, including: tetradecane; pentadecane; 2-isopropyl-5-methyl-1-heptanol; hexadecane; butylated hydroxytoluene; eicosane; 1-iodo-hexadecane; methyl ester hexadecanoic acid; benzenepropanoic acid, 3,5-bis(1,1-dimethylethyl)-4-hydroxy-, methyl ester; L-(+)-ascorbic acid 2,6-dihexadecanoate; and octadecanoic acid. This study provides scientific validation for the use of the Sunda porcupine’s quills in traditional medicine and highlights the potential for further research in animal bioprospecting.
Article Details
This work is licensed under a Creative Commons Attribution 4.0 International License.
References
Abdalaziz M N, Ali M M, Gahallah M D, Garbi M I and Kabbashi A S. (2017). Evaluation of fixed oil, seed extracts of Carum carvi L. International Journal of Computational and Theoretical Chemistry 5(1): 1–8. https://doi.org/10.11648/j.ijctc.20170501.11
Adwas A A, Elsayed A S I, Azab A E and Quwaydir F A. (2019). Oxidative stress and antioxidant mechanisms in human body. Journal of Applied Biotechnology and Bioengineering 6(1): 43–47. https://doi.org/10.15406/jabb.2019.06.00173
Ahmad B, Khan I, Bashir S and Azam S. (2012). Chemical composition and antifungal, phytotoxic, brine shrimp cytotoxicity, insecticidal and antibacterial activities of the essential oils of Acacia modesta. Journal of Medicinal Plants Research 6(31): 4653–4659. https://doi.org/10.5897/JMPR12.016
Akpuaka A, Ekwenchi M M, Dashak D A and Dildar A. (2013). Biological activities of characterized isolates of n-hexane extract of Azadirachta Indica A.Juss (neem) leaves. Nature and Science 11(5): 141–147.
Amrati F E Z, Bourhia M, Saghrouchni H, Slighoua M, Grafov A, Ullah R, Ezzeldin E, Mostafa G A, Bari A, Ibenmoussa S, et al. (2021). Caralluma europaea (Guss.) N.E.Br.: Anti-inflammatory, antifungal, and antibacterial activities against nosocomial antibiotic-resistant microbes of chemically characterized fractions. Molecules 26(3): 636. https://doi.org/10.3390/molecules26030636
Anita S, Agusta A, Farida W R, Nugroho H A and Wulansari D. (2017). A preliminary study of aphrodisiac property from porcupine tail meat ethanol extract in male mice. Zoo Indonesia 26(1): 52–58.
Aplin K. (2016). Hystrix javanica The IUCN Red List of Threatened Species 2016: e.T10752A22231749. https://doi.org/10.2305/IUCN.UK.2016-2.RLTS.T10752A22231749.en
Aryal S, Baniya M K, Danekhu K, Kunwar P, Gurung R and Koirala N. (2019). Total phenolic content, flavonoid content and antioxidant potential of wild vegetables from western Nepal. Plants 8(4): 96. https://doi.org/10.3390/plants8040096
Astiti N P A and Ramona Y. (2021). GCMS analysis of active and applicable compounds in methanol extract of sweet star fruit (Averrhoa carambola L.) leaves. HAYATI Journal of Biosciences 28(1): 12–22. https://doi.org/10.4308/hjb.28.1.12
Ayaz M, Luedecke L O and Branen A L. (1980). Antimicrobial effect of butylated hydroxyanisole and butylated hydroxytoluene on Staphylococcus aureus. Journal of Food Protection 43(1): 4–6. https://doi.org/10.4315/0362-028x-43.1.4
Azliza M A, Ong H C, Vikineswary S, Noorlidah A and Haron N W. (2012). Ethno-medicinal resources used by the Temuan in Ulu Kuang Village. Studies on Ethno-Medicine 6(1): 17–22.
Budiman M A, Ferdian P R, Handayani T H, Nugroho H A, Elfirta R R and Farida W R. (2021). Screening of active compounds and LC50 toxicity assay of Sunda porcupine’s (Hystrix javanica f. Cuvier 1823) quills crude extract. Annales Bogorienses 25(2): 73-81.
Casillas-Vargas G, Ocasio-Malavé C, Medina S, Morales-Guzmán C, Del Valle R G, Carballeira N M and Sanabria-Ríos D J. (2021). Antibacterial fatty acids: An update of possible mechanisms of action and implications in the development of the next generation of antibacterial agents. Progress in Lipid Research 82: 101093. https://doi.org/10.1016/j.plipres.2021.101093
Chakansin C, Yostaworakul J, Warin C, Kulthong K and Boonrungsiman S. (2022). Resazurin rapid screening for antibacterial activities of organic and inorganic nanoparticles: potential, limitations and precautions. Analytical Biochemistry 637: 114449. https://doi.org/10.1016/j.ab.2021.114449
Ershov V V and Volod’kin A A. (1962). Sterically hindered phenols. Bulletin of the Academy of Sciences of the USSR, Division of Chemical Science 11(12): 2057–2060. https://doi.org/10.1007/bf00911365
European Committee on Antimicrobial Susceptibility Testing (EUCAST). (2022). EUCAST reading guide for broth microdilution (version 4.0). https://www.eucast.org/fileadmin/src/media/PDFs/EUCAST_files/Disk_test_documents/2022_manuals/Reading_guide_BMD_v_4.0_2022.pdf (accessed on 1 January 2023).
Farida W R, Sari A P, Inayah N dan Nugroho H A. (2019). Observations of behavioral development on common Porcupines (Hystrix brachyura) undergoing domestication. IOP Conference Series: Earth and Environmental Science 308(1): 012076. https://doi.org/10.1088/1755-1315/308/1/012076
Firdaus M, Kartikaningsih H and Sulifah U. (2019). Sargassum spp extract inhibits the growth of foodborne illness bacteria. AIP Conference Proceedings 2202(1): 020083. https://doi.org/10.1063/1.5141696
Germ J, Poirel L, Kisek T C, Spik V C, Seme K, Premru M M, Zupanc T L, Nordmann P and Pirs M. (2019). Evaluation of resazurin-based rapid test to detect colistin resistance in Acinetobacter baumannii isolates. European Journal of Clinical Microbiology and Infectious Diseases 38(11): 2159–2169. https://doi.org/10.1007/s10096-019-03657-1
Gifardi M D, Sutardi L N, Farida W R, Prawira A Y and Agungpriyono S. (2022). Antibacterial activity of Sunda porcupine quill extract (Hystrix javanica) against Staphylococcus aureus. Biodiversitas 23(8): 4355–4360. https://doi.org/10.13057/biodiv/d230861
Gomez L. (2021). The illegal hunting and exploitation of porcupines for meat and medicine in Indonesia. Nature Conservation 43: 109–122. https://doi.org/10.3897/natureconservation.43.62750
Hadi M Y, Mohammed G J and Hameed I H. (2016). Analysis of bioactive chemical compounds of Nigella sativa using gas chromatography-mass spectrometry. Journal of Pharmacognosy and Phytotherapy 8(2): 8–24. https://doi.org/10.5897/JPP2015.0364
Handayani T H, Budiman M A, Amalia R L R, Pribadi A, Elfirta R R and Ferdian P R. (2022). Aktivitas antioksidan, total fenolik, dan total flavonoid madu apis mellifera dari hutan akasia (Accacia crassicarpa) Riau, Indonesia dengan beberapa perlakuan pengeringan. Jurnal Biologi Indonesia 18(2): 231–243. https://doi.org/10.47349/jbi/18022022/231
Heinrich S, Toomes A and Gomez L. (2020). Valuable stones: The trade in porcupine bezoars. Global Ecology and Conservation 24: e01204. https://doi.org/10.1016/j.gecco.2020.e01204
Hema R, Kumaravel S and Alagusundaram K. (2011). GC/MS determination of bioactive components of Murraya koenigii. Journal of American Science 7(1): 80–83.
Hsouna A B, Trigui M, Mansour R B, Jarraya R M, Damak M and Jaoua S. (2011). Chemical composition, cytotoxicity effect and antimicrobial activity of Ceratonia siliqua essential oil with preservative effects against Listeria inoculated in minced beef meat. International Journal of Food Microbiology 148(1): 66–72. https://doi.org/https://doi.org/10.1016/j.ijfoodmicro.2011.04.028
Igwe O U and Okwunodulu F U. (2014). Investigation of bioactive phytochemical compounds from the chloroform extract of the leaves of Phyllanthus amarus by GC-MS technique. International Journal of Chemistry and Pharmaceutical Sciences 2(1): 554–560.
Inayah N. (2016). Potensi pengembangan landak (Hystrix sp.) sebagai produk komersial. Fauna Indonesia 15(2): 37–43.
Innocenti A, Hall R A, Schlicker C, Mühlschlegel F A and Supuran C T. (2009). Carbonic anhydrase inhibitors. Inhibition of the β-class enzymes from the fungal pathogens Candida albicans and Cryptococcus neoformans with aliphatic and aromatic carboxylates. Bioorganic and Medicinal Chemistry 17(7): 2654–2657. https://doi.org/10.1016/j.bmc.2009.02.058
Jia H, Fang R, Lin J, Tian X, Zhao Y, Chen L, Cao J and Zhou T. (2020). Evaluation of resazurin-based assay for rapid detection of polymyxin-resistant gram-negative bacteria. BMC Microbiology 20(1): 7. https://doi.org/10.1186/s12866-019-1692-3
Kazemi M. (2015). Phenolic profile, antioxidant capacity and anti-inflammatory activity of Anethum graveolens L. essential oil. Natural Product Research 29(6): 551–553. https://doi.org/10.1080/14786419.2014.951934
Khan A Y F, Ahmed Q U, Narayanamurthy V, Razali S, Asuhaimi F A, Saleh M S M, Johan M F, Khatib A, Seeni A and Wahab R A. (2019). Anticancer activity of grassy Hystrix brachyura bezoar and its mechanism of action: An in vitro and in vivo based study. Biomedicine and Pharmacotheraphy 114: 108841. https://doi.org/10.1016/j.biopha.2019.108841
Kim D Y, Won K J, Hwang D I, Kim N Y, Kim B and Lee H M. (2022). 1-Iodohexadecane alleviates 2,4-dinitrochlorobenzene-induced atopic dermatitis in mice: Possible involvements of the skin barrier and mast cell snare proteins. Molecules 27(5): 1560. https://doi.org/10.3390/molecules27051560
Krátký M, Vinšová J and Buchta V. (2012). In vitro antibacterial and antifungal activity of salicylanilide benzoates. Scientific World Journal 98: 42518–42522. https://doi.org/10.1100/2012/290628
Krisyanto R D, Ardian H and Anwari M S. (2019). Kajian etnozoologi untuk pengobatan suku dayak sebaruk di Desa Setunggul Kecamatan Silat Hilir Kabupaten Kapuas Hulu. Jurnal Hutan Lestari 7(3): 1282–1289. https://doi.org/10.26418/jhl.v7i3.37405
Lim C M, Kyung K H and Yoo Y J. (1987). Antimicrobial effects of butylated hydroxyanisole (BHA) and butylated hydroxytoluene (BHT). Korean Journal of Food Science and Technology 19(1): 54–60.
Maeng J H, Shahbaz H M, Ameer K, Jo Y and Kwon J H. (2017). Optimization of microwave-assisted extraction of bioactive compounds from Coriolus versicolor mushroom using response surface methodology. Journal of Food Process Engineering 40(2): e12421. https://doi.org/10.1111/jfpe.12421
Mardiastuti A, Masy’ud B, Ginoga L N, Sastranegara H and Sutopo. (2021). Short communication: Wildlife species used as traditional medicine by local people in Indonesia. Biodiversitas 22(1): 329–337. https://doi.org/10.13057/biodiv/d220140
Maroof K and Gan S H. (2022). Bee products and diabetes mellitus. In D Boyacioglu (ed.). Bee products and their applications in the food and pharmaceutical industries. Cambridge, MA: Academic Press, 63–114. https://doi.org/10.1016/B978-0-323-85400-9.00012-5
Martinac B, Buechner M, Delcour A H, Adler J and Kung C. (1987). Pressure-sensitive ion channel in Escherichia coli. Proceedings of the National Academy of Sciences of the United States of America 84(8): 2297–2301. https://doi.org/10.1073/pnas.84.8.2297
Okechukwu P N. (2020). Evaluation of anti-inflammatory, analgesic, antipyretic effect of eicosane, pentadecane, octacosane, and heneicosane. Asian Journal of Pharmaceutical and Clinical Research 13(4): 29–35. https://doi.org/10.22159/ajpcr.2020.v13i4.36196
Ozdemir G, Karabay N U, Dalay M C and Pazarbasi B. (2004). Antibacterial activity of volatile component and various extracts of Spirulina platensis. Phytotherapy Research 18(9): 754–757. https://doi.org/10.1002/ptr.1541
Pammi N, Bhukya K K, Lunavath R K and Bhukya B. (2021). Bioprospecting of palmyra palm (Borassus flabellifer) nectar: Unveiling the probiotic and therapeutic potential of the traditional rural drink. Frontiers in Microbiology 12: 683996. https://doi.org/10.3389/fmicb.2021.683996
Paudel M R, Chand M B, Pant B and Pant B. (2019). Assessment of antioxidant and cytotoxic activities of extracts of Dendrobium crepidatum. Biomolecules 9(9): 478. https://doi.org/10.3390/biom9090478
Poongulali S and Sundararaman M. (2016). Antimycobacterial, anticandidal and antioxidant properties of Terminalia catappa and analysis of their bioactive chemicals. International Journal of Pharmacy and Biological Sciences 6(2): 69–83.
Prawira A Y, Hosaka Y Z, Novelina S, Farida W R, Darusman H S and Agungpriyono S. (2020). Morphological evaluation of polysaccharide content and collagen composition during cutaneous wound healing in the Sunda porcupine (Hystrix javanica). Journal of Veterinary Medical Science 82(5): 506–515. https://doi.org/10.1292/jvms.19-0603
Prawira A Y, Novelina S, Darusman H S, Farida W R and Agungpriyono S. (2018). The dorsal skin structure contributes to the surface bacteria populations of Sunda Porcupine (Hystrix javanica). Anatomia, Histologia, Embryologia 47(6): 591–598. https://doi.org/10.1111/ahe.12401
Putra Y A E, Masy’ud B and Ulfah M. (2008). Diversity of medicinal animals in Betung Kerihun National Park, West Kalimantan, Indonesia. Media Konservasi 13(1): 8–15.
Sarker S D, Nahar L and Kumarasamy Y. (2007). Microtitre plate-based antibacterial assay incorporating resazurin as an indicator of cell growth, and its application in the in vitro antibacterial screening of phytochemicals. Methods 42(4): 321–324. https://doi.org/10.1016/j.ymeth.2007.01.006
Selvin J, Shanmughapriya S, Gandhimathi R, Kiran G S, Ravji T R, Natarajaseenivasan K and Hema T A. (2009). Optimization and production of novel antimicrobial agents from sponge associated marine actinomycetes Nocardiopsis dassonvillei MAD08. Applied Microbiology and Biotechnology 83(3): 435–445. https://doi.org/10.1007/s00253-009-1878-y
Suyanto. (2012). Domestikasi landak Indonesia. Jakarta: LIPI press.
Van Weers D J. (1983). Specific distinction in Old World porcupines. Der Zoologische Garten Jena 53: 226–232.
Van Weers D J. (1979). Notes on Southeast Asian Porcupines (Hystricidae, Rodentia). IV. On the taxonomy of the subgenus Acanthion F. Cuvier, 1823 with notes on the other taxa of the family. Beaufortia 29(356): 215–272.
Woods C A and Kilpatrick C W. (2005). Infraorder Hystricognathi. In D E Wilson and D M Reeder (eds.). Mammal species of the world. Baltimore, MD: Johns Hopkins University Press, 1538–1600.
Yogeswari S, Ramalakshmi S, Neelavathy R and Muthumary J. (2012). Identification and comparative studies of different volatile fractions from Monochaetia kansensis by GCMS. Global Journal of Pharmacology 6(2): 65–71.