Untargeted Metabolite Profiling of Wild and In Vitro Propagated Sabah Jewel Orchid Macodes limii J.J. Wood and A.L. Lamb
Main Article Content
Abstract
Macodes limii J. J. Wood & A.L. Lamb is a terrestrial jewel orchid native to Sabah, recognised for its sparkling golden-yellow venations, uniformly distributed on its leaves. Despite its high ornamental value, the exploration of the plant’s medicinal potential remains ambiguous. The current study was conducted to gain a fundamental understanding of the metabolite composition and regulation in M. limii plants from two different growing environments: wild and in vitro cultivation, as well as to analyse their phytochemical contents and antioxidant activity. The metabolite profiling of the M . limii plant extracts through gas chromatography-mass spectrometry (GC-MS) and liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis has tentatively identified compounds from various classes including sugars, carbohydrates, sugar alcohols, amino acids, organic acids, phenolic derivatives and lipid and lipid-like compounds. Subsequently, the multivariate statistical analysis confirmed the existence of significant metabolite variations across distinct growth environments. Notably, the leaf extract derived from wild-grown plants displayed the highest levels of total phenolic and flavonoid content, contributing significantly to its higher antioxidant activity as measured by the 2,2-diphenyl-1-picrylhydrazyl (DPPH) assay. The discovery has offered a fundamental understanding of the metabolites in M. limii jewel orchids, indicating that in vitro regenerated plants may represent a viable alternative for further investigating their therapeutic potential, thus helping to alleviate the impact on wild populations.
Article Details
This work is licensed under a Creative Commons Attribution 4.0 International License.
References
Abdalla M A, Li F, Wenzel-Storjohann A, Sulieman S, Tasdemir D and Mühling K H. (2021). Comparative metabolite profile, biological activity and overall quality of three lettuce (Lactuca sativa l., Asteraceae) cultivars in response to sulfur nutrition. Pharmaceutics 13(5): 713. https://doi.org/10.3390/pharmaceutics13050713
Abu-Qaoud H, Shawarb N, Hussen F, Jaradat N and Shtaya M. (2018). Report: Comparison of qualitative, quantitative analysis and antioxidant potential between wild and cultivated Borago officinalis leaves from Palestine. Pakistan Journal of Pharmaceutical Sciences 31(3): 953–959.
Besi E E, Nikong D, Justine V T, Nordin F A, Mus A A, Nelson H V, Mohamad N N, Rusdi N A and Go R. (2020). Preliminary checklist of orchids in the Sungai Kangkawat, Imbak Canyon Conservation Area (ICCA), Sabah, Malaysia. Journal of Tropical Biology and Conservation 17: 49–63. https://doi.org/10.51200/jtbc.v17i.2648
Besi E E, Nikong D, Mat Esa M I, Mus A A, Nelson H V, Mohamad N N, Ombokou R, Rusdi N A, David D, Aziz Z A, et al. (2021). A species checklist of wild orchids in selected sites in Kadamaian, Kota Belud, Sabah. Journal of Tropical Biology and Conservation 18: 131–147. https://doi.org/10.51200/jtbc.v18i.3449
Besi E E, Nikong D, Pungga R S and Go R. (2020). Wild orchid diversity of highland forest in the Heart of Borneo: Long Banga and Tama Abu, Sarawak. Nature Conservation Research 5(Suppl. 1): 125–135. https://doi.org/10.24189/ncr.2020.048
Bin Y L, Liu S Z, Xie T T, Feng W Z, Li H Y, Ye Z J, Dong Z H and Qiu Y K. (2023). Three new compounds from Anoectochilus roxburghii (Wall.) Lindl. Natural Product Research 37(19): 3276–3282. https://doi.org/10.1080/14786419.2022.2070746
Burkhan H, Rajan K S, Appalasamy S, Poobathy R, Chew B L, Mariappan V and Subramaniam S. (2022). Effect of cryopreservation method supported with biochemical analyses in the axillary bud of jewel orchid, Ludisia discolor. Plants 11(7): 879. https://doi.org/10.3390/plants11070879
Carvalho F V, Santana L F, da Silva V D A, Costa S L, Zambotti-Villelae L, Colepicolo P, Ferraz C G and Ribeiro P R. (2021). Combination of a multiplatform metabolite profiling approach and chemometrics as a powerful strategy to identify bioactive metabolites in Lepidium meyenii (Peruvian maca). Food Chemistry 364: 130453. https://doi.org/10.1016/j.foodchem.2021.130453
Chac L D, Thinh B B and Yen N T. (2021). Anti-cancer activity of dry extract of Anoectochilus setaceus Blume against BT474 breast cancer cell line and A549 lung cancer cell line. Research Journal of Pharmacy and Technology 14(2): 730–734. https://doi.org/10.5958/0974-360X.2021.00127.X
Chan K W, Khong N M H, Iqbal S, Umar I M and Ismail M. (2012). Antioxidant property enhancement of sweet potato flour under simulated gastrointestinal pH. International Journal of Molecular Sciences 13(7): 8987–8997. https://doi.org/10.3390/ijms13078987
Chatatikun M and Chiabchalard A. (2013). Phytochemical screening and free radical scavenging activities of orange baby carrot and carrot (Daucus carota Linn.) root crude extracts. Journal of Chemical and Pharmaceutical Research 5(4): 97–102.
Chiang S H and Lin C C. (2018). Antioxidant properties of different portions of organic Anoectochilus formosanus Hayata with different drying treatments. Bioscience Journal 34(1): 12–23.
Christenhusz M J M and Byng J W. (2016). The number of known plants species in the world and its annual increase. Phytotaxa 261(3): 201–217. https://doi.org/10.11646/phytotaxa.261.3.1
Chung D C, Long Le T, Ho N Q C, Nguyen T T, Do D G, Do D T, Nguyen T P M, Nguyen T P T and Hoang N S. (2021). Evaluation of in vitro cytotoxicity and in vivo potential toxicity of the extract from in vitro cultivated Anoectochilus roxburghii Lindl. Journal of Toxicology and Environmental Health, Part A 84(24): 987–1003. https://doi.org/10.1080/15287394.2021.1963363
David D, Rusdi N A, Mohd Mokhtar R A, Mohd Faik A A and Gansau J A. (2022). Establishment of in vitro regeneration protocol for Sabah’s Jewel orchid, Macodes limii JJ Wood & AL Lamb. Horticulturae 8(2): 155. https://doi.org/10.3390/horticulturae8020155
Degu A, Hochberg U, Sikron N, Venturini L, Buson G, Ghan R, Plaschkes I, Batushansky A, Chalifa-Caspi V, Mattivi F, et al. (2014). Metabolite and transcript profiling of berry skin during fruit development elucidates differential regulation between Cabernet Sauvignon and Shiraz cultivars at branching points in the polyphenol pathway. BMC Plant Biology 14(1): 188. https://doi.org/10.1186/s12870-014-0188-4
Djoumbou Feunang Y, Eisner R, Knox C, Chepelev L, Hastings J, Owen G, Fahy E, Steinbeck C, Subramanian S, Bolton E, et al. (2016). ClassyFire: Automated chemical classification with a comprehensive, computable taxonomy. Journal of Cheminformatics 8(1): 61. https://doi.org/10.1186/s13321-016-0174-y
Du X, Smirnov A, Pluskal T, Jia W and Sumner S. (2020). Metabolomics data preprocessing using ADAP and MZmine 2. In S Li (ed). Computational methods and data analysis for metabolomics. Methods in molecular biology, vol. 2104. New York: Humana, 25–48. https://doi.org/10.1007/978-1-0716-0239-3_3
Du X M, Sun N Y, Tamura T, Mohri A, Sugiura M, Yoshizawa T, Irino N, Hayashi J and Shoyama Y. (2001). Higher yielding isolation of kinsenoside in Anoectochilus and its anti-hyperliposis effect. Biological and Pharmaceutical Bulletin 24(1): 65–69. https://doi.org/10.1248/bpb.24.65
Dührkop K, Fleischauer M, Ludwig M, Aksenov A A, Melnik A V, Meusel M, Dorrestein P C, Rousu J and Böcker S. (2019). SIRIUS 4: A rapid tool for turning tandem mass spectra into metabolite structure information. Nature Methods 16(4): 299–302. https://doi.org/10.1038/s41592-019-0344-8
Dührkop K, Nothias L F, Fleischauer M, Reher R, Ludwig M, Hoffmann M A, Petras D, Gerwick W H, Rousu J, Dorrestein P C, et al. (2021). Systematic classification of unknown metabolites using high-resolution fragmentation mass spectra. Nature Biotechnology 39(4): 462–471. https://doi.org/10.1038/s41587-020-0740-8
Gam D T, Khoi P H, Ngoc P B, Linh L K, Hung N K, Anh P T L, Thu N T, Hien N T T, Khanh T D and Ha C H. (2020). LED lights promote growth and flavonoid accumulation of Anoectochilus roxburghii and are linked to the enhanced expression of several related genes. Plants 9(10): 1344. https://doi.org/10.3390/plants9101344
Giap D D, Thai T D, Thang D D, Trang N T H, Tuan T T, Xuyen NT and Hieu D D. (2018). Effects of several organic extracts on the growth, yield and quality of Anoectochilus formosanus biomass. International Journal of Agricultural Technology 14(2): 171–182.
Hamany Djande C Y, Piater L A, Steenkamp P A, Tugizimana F and Dubery I A. (2021). A metabolomics approach and chemometric tools for differentiation of barley cultivars and biomarker discovery. Metabolites 11(9): 578. https://doi.org/10.3390/metabo11090578
He C N, Wang C L, Guo S X, Yang J S and Xiao P G. (2006). A novel flavonoid glucoside from Anoectochilus roxburghii (Wall.) Lindl. Journal of Integrative Plant Biology 48(3): 359–363. https://doi.org/10.1111/j.1744-7909.2006.00179.x
Hoi T M, Van Thai T, Ha C T T, Van Anh H T, Minh P X B and Dat N T. (2016). Flavonoids from Anoectochilus annamensis and their anti-inflammatory activity. Natural Product Communications 11(5): 613–614. https://doi.org/10.1177/1934578x1601100514
Hsieh W T, Tsai C T, Wu J B, Hsiao H B, Yang L C and Lin W C. (2011). Kinsenoside, a high yielding constituent from Anoectochilus formosanus, inhibits carbon tetrachloride induced Kupffer cells mediated liver damage. Journal of Ethnopharmacology 135(2): 440–449. https://doi.org/10.1016/j.jep.2011.03.040
Ito A, Kasai R, Yamasaki K and Sugimoto H. (1993). Aliphatic and aromatic glucosides from Anoectochilus koshunensis. Phytochemistry 33(5): 1133–1137.
Jin M Y, Zhang L Q, Piao X C, Gao R and Lian M. L. (2018). Optimization of culture conditions for the production of polysaccharides and kinsenoside from the rhizome cultures of Anoectochilus roxburghii (Wall.) Lindl. In Vitro Cellular & Developmental Biology – Plant 54(1): 25–35. https://doi.org/10.1007/s11627-017-9883-9
Jin Q R, Mao J W and Zhu F. (2022). The effects of Anoectochilus roxburghii polysaccharides on the innate immunity and disease resistance of Procambarus clarkii. Aquaculture 555: 738210. https://doi.org/10.1016/j.aquaculture.2022.738210
Juiling S, Leon S K, Jumian J, Tsen S T L, Lee Y L, Khoo E, Sugau J B, Nilus R, Pereira J T, Damit A, et al. (2020). Conservation assessment and spatial distribution of endemic orchids in Sabah, Borneo. Nature Conservation Research 5(Suppl. 1): 136–144. https://doi.org/10.24189/ncr.2020.053
Karinchai J, Budluang P, Temviriyanukul P, Ting P, Nuchuchua O, Wongnoppavich A, Imsumran A and Pitchakarn P. (2021). Bioassay-guided study of the antiinflammatory effect of Anoectochilus burmannicus ethanolic extract in RAW 264.7 cells. Journal of Ethnopharmacology 280: 114452. https://doi.org/10.1016/j.jep.2021.114452
Ket N V, Hahn E J, Park S Y, Chakrabarty D and Paek K Y. (2004). Micropropagation of an endangered orchid Anoectochilus formosanus. Biologia Plantarum 48(3): 339–344. https://doi.org/10.1023/B:BIOP.0000041084.77832.11
Lee D K, Yoon M H, Kang Y P, Yu J, Park J H, Lee J and Kwon S W. (2013). Comparison of primary and secondary metabolites for suitability to discriminate the origins of Schisandra chinensis by GC/MS and LC/MS. Food Chemistry 141(4): 3931–3937. https://doi.org/10.1016/j.foodchem.2013.06.064
Li R Z, Lin J, Wang X X, Yu X M, Chen C L and Guan Y F. (2017). Metabolomics analysis of Anoectochilus roxburghii at different cultivation stages. Chinese Journal of Traditional Chinese Medicine 42(23): 4624–4630. https://doi.org/10.19540/j.cnki.cjcmm.20170928.007
Liu Q, Ha W, Liu Z, Xu J, Tian Y, Zhou X and Mu X. (2014). 3-Hydroxybutanolide derivatives and flavonoid glucosides from Anoectochilus roxburghii. Phytochemistry Letters 8(1): 109–115. https://doi.org/10.1016/j.phytol.2014.02.013
Liu Z L, Liu Q, Xiao B, Zhou J, Zhang J G and Li Y. (2013). The vascular protective properties of kinsenoside isolated from Anoectochilus roxburghii under high glucose condition. Fitoterapia 86(1): 163–170. https://doi.org/10.1016/j.fitote.2013.03.006
Luo W Y, Yang F, Piao X C, Jin M Y, Tian W, Gao Y and Lian M L. (2018). Promising strategy to efficiently improve the kinsenoside and polysaccharide production of rhizome cultures of Anoectochilus roxburghii (Wall.) Lindl. Industrial Crops and Products 125: 269–275. https://doi.org/10.1016/j.indcrop.2018.09.006
Murashige T and Skoog F. (1962). A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiologia Plantarum 15(3): 473–497. https://doi.org/10.1111/j.1399-3054.1962.tb08052.x
Nguyen H C, Nhu T Q M, Dung P V, Hieu N D, Tuan T T, Huyen P X and Truong D H. (2018). Evaluation of changes in the growth and chemical constituents of Anoectochilus formosanus Hayata grown under hydroponic conditions. Biotechnologia 99(4): 375–383. https://doi.org/10.5114/bta.2018.79968
Nguyen T P, Phan H N, Do T D, Do G D, Ngo L H, Do H D K and Nguyen K T. (2023). Polysaccharide and ethanol extracts of Anoectochilus formosanus Hayata: Antioxidant, wound-healing, antibacterial, and cytotoxic activities. Heliyon 9(3): e13559 https://doi.org/10.1016/j.heliyon.2023.e13559
Ni Y, Su M, Qiu Y, Jia W and Du X. (2016). ADAP-GC 3.0: Improved peak detection and deconvolution of co-eluting metabolites from GC/TOF-MS data for metabolomics studies. Analytical Chemistry 88(17): 8802–8811. https://doi.org/10.1021/acs.analchem.6b02222
Perez de Souza L, Alseekh S, Naake T and Fernie A. (2019). Mass spectrometry-based untargeted plant metabolomics. Current Protocols in Plant Biology 4(4): e20100. https://doi.org/10.1002/cppb.20100
Pluskal T, Castillo S, Villar-Briones A and Orešič M. (2010). MZmine 2: Modular framework for processing, visualizing, and analyzing mass spectrometry-based molecular profile data. BMC Bioinformatics 11: 395. https://doi.org/10.1186/1471-2105-11-395
Qi C, Zhou Q, Yuan Z, Luo Z, Dai C, Zhu H, Chen C, Xue Y, Wang J, Wang Y, et al. (2018). Kinsenoside: A promising bioactive compound from Anoectochilus species. Current Medical Science 38(1): 11–18. https://doi.org/10.1007/s11596-018-1841-1
Qin Z, Liao D, Chen Y, Zhang C, An R, Zeng Q and Li X. (2020). A widely metabolomic analysis revealed metabolic alterations of Epimedium pubescens leaves at different growth stages. Molecules 25(1): 137. https://doi.org/10.3390/molecules25010137
Rehman S U, Kim I S, Choi M S, Luo Z, Yao G, Zhang Y, Xue Y and Yoo H H. (2015). Evaluation of metabolic stability of kinsenoside, an antidiabetic candidate, in rat and human liver microsomes. Mass Spectrometry Letters 6(2): 48–51. https://doi.org/10.5478/MSL.2015.6.2.48
Sembiring E N, Elya B and Sauriasari R. (2018). Phytochemical screening, total flavonoid and total phenolic content and antioxidant activity of different parts of Caesalpinia bonduc (L.) Roxb. Pharmacognosy Journal 10(1): 123–127. https://doi.org/10.5530/pj.2018.1.22
Sherif N A, Kumar T S and Rao MV. (2016). In vitro regeneration by callus culture of Anoectochilus elatus Lindley, an endangered terrestrial jewel orchid. In Vitro Cellular and Developmental Biology 52(1): 72–80. https://doi.org/10.1007/s11627-015-9741-6
Shi Y, He X, Bai B, Wang H, Liu C, Xue L, Wu J, Wu Y and Zheng C. (2023). Structural characterization and antinociceptive activity of polysaccharides from Anoectochilus elatus. International Journal of Biological Macromolecules 233: 123542. https://doi.org/10.1016/j.ijbiomac.2023.123542
Smidt E C, Salazar G A, Mauad A V S R, Engels M E, Viruel J, Clements M, Pérez I J and Chase M W. (2021). An Indomalesian origin in the Miocene for the diphyletic New World jewel orchids (Goodyerinae, Orchidoideae): Molecular dating and biogeographic analyses document non-monophyly of the Neotropical genera. Botanical Journal of the Linnean Society 197(3): 322–349. https://doi.org/10.1093/botlinnean/boab028
Tangtragoon T, Kawaree R, Sutigoolabud P, Mongkon S, Polvongsri S and Nilapaka W. (2023). Effects of LED lighting technology on morphology, antioxidant activity, and the bioactive compounds accumulation of Anoectochilus burmannicus in the greenhouse system. Trends in Sciences 20(3): 6296. https://doi.org/10.48048/tis.2023.6296
Wang H, Chen X, Yan X, Xu Z, Shao Q, Wu X, Tou L, Fang L, Wei M and Wang H. (2022). Induction, proliferation, regeneration and kinsenoside and flavonoid content analysis of the Anoectochilus roxburghii (Wall.) Lindl protocorm-like body. Plants 11(19): 2465. https://doi.org/10.3390/plants11192465
Wang L, Chen Q, Zhuang S, Wen Y, Cheng W, Zeng Z, Jiang T and Tang C. (2020). Effect of Anoectochilus roxburghii flavonoids extract on H2O2 - Induced oxidative stress in LO2 cells and D-gal induced aging mice model. Journal of Ethnopharmacology 254: 112670. https://doi.org/10.1016/j.jep.2020.112670
Wang W, Su M, Li H, Zeng B, Chang Q and Lai Z. (2018). Effects of supplemental lighting with different light qualities on growth and secondary metabolite content of Anoectochilus roxburghii. PeerJ 6: e5274. https://doi.org/10.7717/peerj.5274
Wong C, Ling Y S, Wee J L S, Mujahid A and Müller M. (2020). A comparative UHPLC-Q/TOF–MS-based eco-metabolomics approach reveals temperature adaptation of four Nepenthes species. Scientific Reports 10(1): 21861. https://doi.org/10.1038/s41598-020-78873-3
Wood J J, Beaman T E, Lamb A, Lun C C and Beaman J H. (2011). The orchids of Mount Kinabalu, vol. 2. Kota Kinabalu: Natural History Publications.
Wu T, Li S, Huang Y, He Z, Zheng Y, Stalin A, Shao Q and Lin D. (2021). Structure and pharmacological activities of polysaccharides from Anoectochilus roxburghii (Wall.) Lindl. Journal of Functional Foods 87: 104815. https://doi.org/10.1016/j.jff.2021.104815
Wu Y B, Peng M C, Zhang C, Wu J G, Ye B Z, Yi J, Wu J Z and Zheng C J. (2020). Quantitative determination of multi-class bioactive constituents for quality assessment of ten Anoectochilus, four Goodyera and one Ludisia species in China. Chinese Herbal Medicines 12(4): 430–439. https://doi.org/10.1016/j.chmed.2020.07.002
Wu Y, Liu C, Jiang Y, Bai B, He X, Wang H, Wu J and Zheng C. (2022). Structural characterization and hepatoprotective effects of polysaccharides from Anoectochilus zhejiangensis. International Journal of Biological Macromolecules 198: 111–118. https://doi.org/10.1016/j.ijbiomac.2021.12.128
Xie X, Tu Z C, Zhang L, Zhao Y, Wang H, Wang Z X, Zhang N H and Zhong B Z. (2017). Antioxidant activity, α-glucosidase inhibition, and phytochemical fingerprints of Anoectochilus roxburghii formula tea residues with HPLC-QTOF-MS/MS. Journal of Food Biochemistry 41(6): e12402. https://doi.org/10.1111/JFBC.12402
Yang X, Feng L, Zhao L, Liu X, Hassani D and Huang D. (2018). Effect of glycine nitrogen on lettuce growth under soilless culture: A metabolomics approach to identify the main changes occurred in plant primary and secondary metabolism. Journal of the Science of Food and Agriculture 98(2): 467–477. https://doi.org/10.1002/jsfa.8482
Ye B, Wu Y, Zhai X, Zhang R, Wu J, Zhang C, Rahman K, Qin L, Han T and Zheng C. (2020). Beneficial effects of endophytic fungi from the Anoectochilus and Ludisia species on the growth and secondary metabolism of Anoectochilus roxburghii. ACS Omega 5(7): 3487–3497. https://doi.org/10.1021/acsomega.9b03789
Yoon J, Cho L H, Tun W, Jeon J S and An G. (2021). Sucrose signaling in higher plants. Plant Science 302: 110703. https://doi.org/10.1016/j.plantsci.2020.110703
Yu X, Huang L, You C and Huang L. (2021). Hepatoprotective effects of polysaccharide from Anoectochilus roxburghii (Wall.) Lindl. on rat liver injury induced by CCl4. Drug Design, Development and Therapy 15: 2885–2897. https://doi.org/10.2147/DDDT.S310263
Yuan X, Ni H, Hou Y, Lai M T and Hu S Q. (2022). Efficient short extraction and purification procedures of kinsenoside from Anoectochilus roxburghii with deep eutectic solvent by column chromatographic extraction. Industrial Crops and Products 182: 114866. https://doi.org/10.1016/j.indcrop.2022.114866
Zain S N D M and Omar W A W. (2018). Antioxidant activity, total phenolic content and total flavonoid content of water and methanol extracts of Phyllanthus species from Malaysia. Pharmacognosy Journal 10(4): 677–681. http://doi.org/10.5530/pj.2018.4.111
Zargoosh Z, Ghavam M, Bacchetta G and Tavili A. (2019). Effects of ecological factors on the antioxidant potential and total phenol content of Scrophularia striata Boiss. Scientific Reports 9(1): 16021. https://doi.org/10.1038/s41598-019-52605-8
Zhang Z, Guo L, Yan A, Feng L and Wan Y. (2020). Fractionation, structure and conformation characterization of polysaccharides from Anoectochilus roxburghii. Carbohydrate Polymers 231: 115688. https://doi.org/10.1016/j.carbpol.2019.115688