Transcriptome Profile and Gene Expression During Different Ovarian Maturation Stages of Macrobrachium rosenbergii (De Man, 1879)

Main Article Content

Mohd Pauzi Mardhiyyah
Muhammad Faiz Zakaria
Adnan Amin-Safwan
Mamat Nur- Syahirah
Yeong Yik Sung
Hongyu Ma
Mhd Ikhwanuddin

Abstract

Macrobrachium rosenbergii, or giant river prawn, is the most economically crucial cultured freshwater crustacean. A predominant challenge in developing crustacean aquaculture is reproduction management, particularly ovary maturation, where identifying regulative mechanisms at the molecular level is critical. Ovary is the primary tissue for studying gene and protein expressions involved in crustacean growth and reproduction. Despite significant interest in M. rosenbergii, its gene discovery has been at a relatively small scale compared to other genera. In this study, comprehensive transcriptomic sequencing data for different maturation stages of the ovary of M. rosenbergii were observed. The 20 female M. rosenbergii samples evaluated were categorised into four maturation stages, 1 to 4. A total of 817,793,14, 841,670,70, 914,248,78 and 878,085,88 raw reads were obtained from stages 1, 2, 3 and 4, respectively. The assembled unique sequences (unigenes) post-clustering (n = 98013) was 131,093,546 bp with an average size of 1,338 bp. The BLASTX unigene search against National Centre for Biotechnology Information (NCBI), non-redundant (NR), nucleotide sequence (NT), Kyoto Encyclopaedia of Genes and
Genomes Orthology (KO), Swiss-Prot, Protein Family (PFAM), Gene Ontology (GO), and euKaryotic Orthologous Groups (KOG) databases yielded 27,680 (28.24%), 7,449 (7.59%), 13,026 (13.29%), 22,606 (23.06%), 29,907 (30.51%), 30,025 (30.63%) and 14,368 (14.65%) significant matches, respectively, totalling to 37,338 annotated unigenes (38.09%). The differentially expressed genes (DEG) analysis conducted in this study led to identifying cyclin B, insulin receptor (IR), oestrogen sulfotransferase (ESULT) and vitellogenin (Vg), which are critical in ovarian maturation. Nevertheless, some M. rosenbergii ovarian maturation-related genes, such as small ubiquitin-like modifier (SUMO)-activating enzyme subunit 1, E3 ubiquitin-protein ligase RNF25, and neuroparsin, were first identified in this study. The data obtained in the present study could considerably contribute to understanding the gene expression and genome structure in M. rosenbergii ovaries throughout its developmental stage.

Article Details

How to Cite
Transcriptome Profile and Gene Expression During Different Ovarian Maturation Stages of Macrobrachium rosenbergii (De Man, 1879). (2024). Tropical Life Sciences Research, 35(3), 77-108. https://doi.org/10.21315/tlsr2024.35.3.4
Section
Original Article

References

Ara F and Damrongphol P. (2014). Vitellogenin gene expression at different ovarian stages in the giant freshwater prawn, Macrobrachium rosenbergii, and stimulation by 4-nonylphenol. Aquaculture Research 45(2): 320–326. https://doi.org/10.1111/j.1365-2109.2012.03229.x

Arockiaraj J, Easwvaran S, Vanaraja P, Singh A, Othman R Y and Bhassu S. (2012). Molecular cloning, characterization and gene expression of an antioxidant enzyme catalase (MrCat) from Macrobrachium rosenbergii. Fish and Shellfish Immunology 32(5): 670–682. https://doi.org/10.1016/j.fsi.2012.01.013

Arockiaraj J, Vanaraja P, Easwvaran S, Singh A, Alinejaid T, Othman R Y and Bhassu S. (2011). Gene profiling and characterization of arginine kinase-1 (MrAK-1) from freshwater giant prawn (Macrobrachium rosenbergii). Fish and Shellfish Immunology 31(1): 81–89. https://doi.org/10.1016/j.fsi.2011.04.004

Arockiaraj M, Manuel P, Rajasingh I and Rajan B. (2011). Wirelength of 1-fault hamiltonian graphs into wheels and fans. Information Processing Letters 111(18): 921–925. https://doi.org/10.1016/j.ipl.2011.06.011

Artus J, Babinet C and Cohen-Tannoudji M. (2006). The cell cycle of early mammalian embryos lessons from genetic mouse models. Cell Cycle 5: 499–502. https://doi.org/10.4161/cc.5.5.2500

Auttarat J, Phiriyangkul P and Utarabhand P. (2006). Characterization of vitellin from the ovaries of the banana shrimp Litopenaeus merguiensis. Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology 143(1): 27–36. https://doi.org/10.1016/j.cbpb.2005.09.009

Baliarsingh S, Chung J M, Sahoo S, Sarkar A, Mohanty J, Han Y S, Lee Y S and Patnaik B B. (2021). Transcriptome analysis of Macrobrachium rosenbergii hepatopancreas in response to Vibrio harveyi infection. Aquaculture Research 52(5): 1855–1875. https://doi.org/10.1111/are.15034

Dakshinamurti K. (2005). Biotin: A regulator of gene expression. The Journal of Nutritional Biochemistry 16(7): 419–423. https://doi.org/10.1016/j.jnutbio.2005.03.015

De Grave S, Cai Y and Anker A. (2008). Global diversity of shrimps (Crustacea: Decapoda: Caridea) in freshwater. Hydrobiologia 595: 287–293. https://doi.org/10.1007/s10750-007-9024-2

Desterro J M P, Thomson J and Hay R T. (1997). Ubc9 conjugates SUMO but not ubiquitin. FEBS Letter 417(3): 297–300. https://doi.org/10.1016/S0014-5793(97)01305-7

Ding Z, Jin M and Ren Q. (2018). Transcriptome analysis of Macrobrachium rosenbergii intestines under the white spot syndrome virus and poly (I:C) challenges. PLoS One 13(9): e0204626. https://doi.org/10.1371/journal.pone.0204626

Feng H, Dong Y T, Liu X and Qiu G F. (2020). Cyclin B protein undergoes increased expression and nuclear relocation during oocyte meiotic maturation of the freshwater prawn Macrobrachium rosenbergii and the Chinese mitten crab Eriocheir sinensis. Gene 758: 144955. https://doi.org/10.1016/j.gene.2020.144955

Ghosh P and Thomas P. (1995). Binding of metals to red drum vitellogenin and incorporation into oocytes. Marine Environmental Research 39(1–4): 165–168. https://doi.org/10.1016/0141-1136(94)00035-N

Goodsell D S. (2006). The molecular perspective: Cisplatin. Stem Cells 24(3): 514–515. https://doi.org/10.1634/stemcells.2006-CSC2

Götz S, García-Gómez J M, Terol J, Williams T D, Nagaraj S H, Nueda M J, Robles M, Talón M, Dopazo J and Conesa A. (2008). High-throughput functional annotation and data mining with the Blast2GO suite. Nucleic Acids Research 36(10): 3420–3435. https://doi.org/10.1093/nar/gkn176

Grabherr M G, Haas B J, Yassour M, Levin J Z, Thompson D A, Amit I, Adiconis A et al. (2011). Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nature Biotechnology 29(7): 644–652. https://doi.org/10.1038/nbt.1883

Hashiyama K, Shigenobu S and Kobayashi S. (2009). Expression of genes involved in sumoylation in the Drosophila germline. Gene Expression Patterns 9(1): 50–53. https://doi.org/10.1016/j.gep.2008.08.001

Hecker C M, Rabiller M, Haglund K, Bayer P and Dikic I. (2006). Specification of SUMO1- and SUMO2-interacting Motifs. Journal of Biological Chemistry 281(23): 16117–16127. https://doi.org/10.1074/jbc.M512757200

Jayasankar V, Tsutsui N, Jasmani S, Saido-Sakanaka H, Yang W J, Okuno A, Hien T T T, Aida K and Wilder M N. (2002). Dynamics of vitellogenin mRNA expression and changes in hemolymph vitellogenin levels during ovarian maturation in the giant freshwater prawn Macrobrachium rosenbergii. Journal of Experimental Zoology 293(7): 675–682. https://doi.org/10.1002/jez.10167

Jia X, Chen Y, Zou Z, Lin P, Wang Y and Zhang Z. (2013). Characterization and expression profile of Vitellogenin gene from Scylla paramamosain. Gene 520(2): 119–130. https://doi.org/10.1016/j.gene.2013.02.035

Jiang H, Yin Y, Zhang X, Hu S and Wang Q. (2009). Chasing relationships between nutrition and reproduction: A comparative transcriptome analysis of hepatopancreas and testis from Eriocheir sinensis. Comparative Biochemistry and Physiology Part D: Genomics and Proteomics 4(3): 227–234. https://doi.org/10.1016/j.cbd.2009.05.001

Jiang Q, Min Y, Yang H, Wan W and Zhang X. (2019). De novo transcriptome analysis of eyestalk reveals ovarian maturation related genes in Macrobrachium rosenbergii. Aquaculture 505: 280–288. https://doi.org/10.1016/j.aquaculture.2019.02.073

Jung H, Lyons R E, Dinh H, Hurwood D A, McWilliam S and Mather P B. (2011). Transcriptomics of a giant freshwater prawn (Macrobrachium rosenbergii): De novo assembly, annotation and marker discovery. PLoS ONE 6(12): e27938. https://doi.org/10.1371/journal.pone.0027938

Jung H, Yoon B H, Kim W J, Kim D W, Hurwood D A, Lyons R E, Salin K R, Kim H, Baek I, Chand V and Mather P B. (2016). Optimizing hybrid de novo transcriptome assembly and extending genomic resources for giant freshwater prawns (Macrobrachium rosenbergii): The identification of genes and markers associated with reproduction. International Journal of Molecular Sciences 17(5): 690. https://doi.org/10.3390/ijms17050690

Kendziorski C, Irizarry R A, Chen K S, Haag J D and Gould M N. (2005). On the utility of pooling biological samples in microarray experiments. Proceedings of the National Academy of Sciences 102(12): 4252–4257. https://doi.org/10.1073/pnas.0500607102

Kung S Y, Chan S M, Hui J H L, Tsang W S, Mak A and He J G. (2004). Vitellogenesis in the sand shrimp, Metapenaeus ensis: The contribution from the hepatopancreas-speci?c vitellogenin gene (MeVg2). Biology of Reproduction 71(3): 863–870. https://doi.org/10.1095/biolreprod.103.022905

Lafontaine A, Hanikenne M, Boulangé-Lecomte C, Forget-Leray J, Thomé J P and Gismondi E. (2016). Vitellogenin and vitellogenin receptor gene expression and 20-hydroxyecdysone concentration in Macrobrachium rosenbergii exposed to chlordecone. Environmental Science and Pollution Research 23: 20661–20671. https://doi.org/10.1007/s11356-016-7273-1

Liu X, Jiang H, Ye B, Qian H, Guo Z, Bai H, Gong J, Feng J and Ma K. (2021). Comparative transcriptome analysis of the gills and hepatopancreas from Macrobrachium rosenbergii exposed to the heavy metal Cadmium (Cd2+). Scientific Reports 11(1): 16140. https://doi.org/10.1038/s41598-021-95709-w

Livak K J and Schmittgen T D. (2001). Analysis of relative gene expression data using realtime quantitative PCR and the 2???CT method. Methods 25(4): 402–408. https://doi.org/10.1006/meth.2001.1262

Martins J, Ribeiro K, Rangel-Figueiredo T and Coimbra J. (2007). Reproductive cycle, ovarian development, and vertebrate-type steroids profile in the freshwater prawn Macrobrachium rosenbergii. Journal of Crustacean Biology 27(2): 220–228. https://doi.org/10.1651/C-2597.1

Meeratana P and Sobhon P. (2007). Classification of differentiating oocytes during ovarian cycle in the giant freshwater prawn, Macrobrachium rosenbergii De Man. Aquaculture 270(1–4): 249–258. https://doi.org/10.1016/j.aquaculture.2007.03.009

Meng X L, Liu P, Jia F L, Li J and Gao B Q. (2015). De novo transcriptome analysis of Portunus trituberculatus ovary and testis by RNA-Seq: Identification of genes involved in gonadal development. PLoS ONE 10(6): e0128659. https://doi.org/10.1371/journal.pone.0128659

Mohd-Shamsudin M I, Kang Y, Lili Z, Tan T T, Kwong Q B, Liu H, Zhang G, Othman R Y and Bhassu S. (2013). In-depth tanscriptomic analysis on giant freshwater prawns. PLoS ONE 8(5): e60839. https://doi.org/10.1371/journal.pone.0060839

Montorzi M, Falchuk K H and Vallee B L. (1995). Vitellogenin and lipovitellin: Zinc proteins of Xenopus laevis oocytes. Biochemistry 34: 10851–10858. https://doi.org/10.1021/bi00034a018

Parnes S, Mills E, Segall C, Raviv S, Davis C and Sagi A. (2004). Reproductive readiness of the shrimp Litopenaeus vannamei grown in a brackish water system. Aquaculture 236(1–4): 593–606. https://doi.org/10.1016/j.aquaculture.2004.01.040

Pasookhush P, Hindmarch C, Sithigorngul P, Longyant S, Bendena W G and Chaivisuthangkura P. (2019). Transcriptomic analysis of Macrobrachium rosenbergii (giant freshwater prawn) post-larvae in response to M. rosenbergii nodavirus (MrNV) infection: De novo assembly and functional annotation. BMC Genomics 20(1): 762. https://doi.org/10.1186/s12864-019-6102-6

Rao R, Zhu Y B, Alinejad T, Tiruvayipati S, Lin Thong K L, Wang J and Bhassu S. (2015). RNA-seq analysis of Macrobrachium rosenbergii hepatopancreas in response to Vibrio parahaemolyticus infection. Gut Pathogens 7(1): 6. https://doi.org/10.1186/s13099-015-0052-6

Schmidt D and Muller S. (2003). PIAS/SUMO: New partners in transcriptional regulation. Cellular and Molecular Life Sciences 60: 2561–2574. https://doi.org/10.1007/s00018-003-3129-1

Sharabi O, Manor R, Weil S, Aflalo E D, Lezer Y, Levy T, Aizen J et al. (2016). Identification and characterization of an insulin-like receptor involved in crustacean reproduction. Endocrinology 157(2): 928–941. https://doi.org/10.1210/en.2015-1391

Soonklang N, Wanichanon C, Stewart M J, Stewart P, Meeratana P, Hanna P J and Sobhon P. (2012). Ultrastructure of differentiating oocytes and vitellogenesis in the giant freshwater prawn, Macrobrachium rosenbergii (De Man). Microscopy Research and Technique 75(10): 1402–1415. https://doi.org/10.1002/jemt.22081

Storey J D. (2003). The positive false discovery rate: A Bayesian interpretation and the q-value. The Annals of Statistics 31(6): 2013–2035. https://doi.org/10.1214/aos/1074290335

Subramoniam T. (2000). Crustacean ecdysteroids in reproduction and embryogenesis. Comparative Biochemistry and Physiology Part C: Pharmacology, Toxicology and Endocrinology 125(2): 135–156. https://doi.org/10.1016/S0742-8413(99)00098-5

Suwansa-Ard S, Thongbuakaew T, Wang T, Zhao M, Elizur A, Hanna P J, Sretarugsa P, Cummins S F and Sobhon P. (2015). In silico neuropeptidome of female Macrobrachium rosenbergii based on transcriptome and peptide mining of eyestalk, central nervous system and ovary. PLoS ONE 10(5): e0123848. https://doi.org/10.1371/journal.pone.0123848

Thongbuakaew T, Siangcham T, Suwansa-Ard S, Elizur A, Cummins S F, Sobhon P and Sretarugsa P. (2016). Steroids and genes related to steroid biosynthesis in the female giant freshwater prawn, Macrobrachium rosenbergii. Steroids 107: 149–160. https://doi.org/10.1016/j.steroids.2016.01.006

Tiu S H K, Hui J HVL, Mak A S C, He J G and Chan S M. (2006). Equal contribution of hepatopancreas and ovary to the production of vitellogenin (PmVg 1) transcripts in the tiger shrimp, Penaeus monodon. Aquaculture 254(1–4): 666–674. https://doi.org/10.1016/j.aquaculture.2005.11.001

Ventura T, Rosen O and Sagi A. (2011). From the discovery of the crustacean androgenic gland to the insulin-like hormone in six decades. General and Comparative Endocrinology 173(3): 381–388. https://doi.org/10.1016/j.ygcen.2011.05.018

Waiho K, Fazhan H, Shahreza M S, Moh J H Z, Noorbaiduri S, Wong L L, Sinnasamy S and Ikhwanuddin M. (2017). Transcriptome analysis and differential gene expression on the testis of orange mud crab, Scylla olivacea, during sexual maturation. PLoS ONE 12(1): e0171095. https://doi.org/10.1371/journal.pone.0171095

Waiho K, Shi X, Fazhan H, Li S, Zhang Y, Zheng H, Liu W, Fang S, Ikhwanuddin M and Ma H. (2019). High-density genetic linkage maps provide novel insights into ZW/ZZ sex determination system and growth performance in mud crab (Scylla paramamosain). Frontiers in Genetics 10: 298–313. https://doi.org/10.3389/fgene.2019.00298

Weissman I L, Anderson D J and Gage F. (2001). Stem and progenitor cells: Origins, phenotypes, lineage commitments, and transdifferentiations. Annual Review of Cell and Developmental Biology 17(1): 387–403. https://doi.org/10.1146/annurev.cellbio.17.1.387

Xie S, Sun L, Liu F and Dong B. (2009). Molecular characterization and mRNA transcript profile of vitellogenin in Chinese shrimp, Fenneropenaeus chinensis. Molecular Biology Reports 36(2): 389–397. https://doi.org/10.1007/s11033-007-9192-1

Yang B Z, Yang L, Zhang P, Tan Y G, Yan L and Chen S. (2015). Fish by-catch in shrimp beam trawls in the northern South China Sea. Journal of Applied Ichthyology 31(4): 714–717. https://doi.org/10.1111/jai.12777

Ying N, Wang Y, Song X, Qin B, Wu Y, Yang L and Fang W. (2022). Transcriptome analysis of Macrobrachium rosenbergii: Identification of precocious puberty and slow-growing information. Journal of Invertebrate Pathology 190: 107752. https://doi.org/10.1016/j.jip.2022.107752

Zeng D, Chen X, Xie D, Zhao Y, Yang C, Li Y, Ma N, Peng M, Yang Q, Liao Z, Wang H and Chen X. (2013). Transcriptome analysis of Pacific white shrimp (Litopenaeus vannamei) hepatopancreas in response to Taura syndrome Virus (TSV) experimental infection. PLoS ONE 8(2): e57515. https://doi.org/10.1371/journal.pone.0057515

Zhang S D and Gant T W. (2005). Effect of pooling samples on the efficiency of comparative studies using microarrays. Bioinformatics 21(24): 4378–4383. https://doi.org/10.1093/bioinformatics/bti717