Brain Shift Patterns: Upward, Lateral and Downward Herniation, Its Correlation with Clinical Patterns in Acute Intracranial Pathologies and Management
Main Article Content
Abstract
Brain shift represents a critical radiological indicator of intracranial mass effect, reflecting displacement of neural structures due to hematoma, tumour, infarction, or cerebral oedema. Depending on the direction of displacement, brain herniation may manifest as downward (transtentorial), upward (reverse transtentorial), or lateral (midline) shifts (MLSs). Understanding these patterns and their correlation with neurological deterioration remains vital for timely diagnosis and management. The purpose of this analysis is to classify brain shift patterns — downward, lateral, and upward transtentorial herniations — and to correlate radiological findings with clinical parameters including level of consciousness, Glasgow Coma Scale (GCS), pupillary size and reactivity, and predicted intracranial pressure (ICP) values. We compare data from radiological imaging (CT and MRI) and clinical observations of patients with acute intracranial pathology. Downward transtentorial herniation was graded into four stages based on the caudal migration of the mammillary bodies and related structures; upward transtentorial herniation was classified into three progressive stages based on cerebellar and brainstem displacement. Midline shift (MLS) was correlated with GCS, pupillary changes, and ICP through comparative analysis of previous literature and observed patient data. A progressive relationship was observed between the degree of brain displacement and neurological decline. Increasing MLS correlated inversely with GCS and directly with anisocoria and elevated ICP. Downward and upward transtentorial herniations demonstrated distinct sequential imaging and clinical features, ranging from subtle diencephalic dysfunction to brainstem failure. Brain shift patterns — downward, upward, and lateral — are key indicators of neurological deterioration and prognosis in acute intracranial pathologies. Establishing a standardised correlation between imaging and clinical parameters enhances early recognition, facilitates surgical intervention, and improves patient outcomes.
Article Details

This work is licensed under a Creative Commons Attribution 4.0 International License.
References
Servadei F, Nasi MT, Giuliani G, Cremonini AM, Cenni P, Zappi D, et al. CT prognostic factors in acute subdural haematomas: the value of the “worst” CT scan. Br J Neurosurg. 2000;14(2):110–116. https://doi.org/10.1080/02688690050004525
Maas AIR, Menon DK, Adelson PD, Andelic N, Bell MJ, Belli A, et al. Traumatic brain injury: integrated approaches to improve prevention, clinical care, and research. Lancet Neurol. 2017;16(12):987–1048. https://doi.org/10.1016/S1474-4422(17)30371-X
Gentry LR, Godersky JC, Thompson B. MR imaging of head trauma: review of the distribution and radiologic features of traumatic lesions. AJR Am J Roentgenol. 1988;150(3):663–672. https://doi.org/10.2214/ajr.150.3.663
Adams RD, Victor M. Principles of Neurology. 5th ed. New York: McGraw-Hill; 1993.
Osborn AG, Salzman KL, Barkovich AJ. Diagnostic Imaging: Brain. 4th ed. Philadelphia: Elsevier; 2018.
Chesnut RM, Temkin N, Carney N, Dikmen S, Rondina C, Videtta W, et al. A trial of intracranial-pressure monitoring in traumatic brain injury. N Engl J Med. 2012;367(26):2471–2481. https://doi.org/10.1056/NEJMoa1207363
Young SJ, Quisling RG, Bidari S, Sanghvi TS. An objective study of anatomic shifts in intracranial hypotension using four anatomic planes. Radiol Res Pract. 2018;2018:6862739. https://doi.org/10.1155/2018/6862739
Posner JB, Saper CB, Schiff ND, Plum F. Diagnosis of Stupor and Coma. 4th ed. New York: Oxford University Press; 2007. https://doi.org/10.1093/med/9780195321319.001.0001
Reich JB, Sierra J, Camp W, Zanzonico P, Deck MD, Plum F. Magnetic resonance imaging measurements and clinical changes accompanying transtentorial and foramen magnum brain herniation. Ann Neurol. 1993;33(2):159–170. https://doi.org/10.1002/ana.410330205
Liu R, Li S, Su B, et al. Automatic detection and quantification of brain midline shift using anatomical marker model. Comput Med Imaging Graph. 2014;38(1):1–14. https://doi.org/10.1016/j.compmedimag.2013.11.001
Ropper AH. Lateral displacement of the brain and level of consciousness in patients with an acute hemispheral mass. N Engl J Med. 1986;314(15):953–958. https://doi.org/10.1056/NEJM198604103141504
Ross DA, Olsen WL, Ross AM, Andrews BT, Pitts LH. Brain shift, level of consciousness, and restoration of consciousness in patients with acute intracranial hematoma. J Neurosurg. 1989;71(4):498–502. https://doi.org/10.3171/jns.1989.71.4.0498
Jacobs B, Beems T, Van der Vliet TM, Diaz-Arrastia RR, Borm GF, Vos PE. Computed tomography and outcome in moderate and severe traumatic brain injury: hematoma volume and midline shift revisited. J Neurotrauma. 2011;28(2):203–215. https://doi.org/10.1089/neu.2010.1558
Greenberg MS. Coma and Death. In: Greenberg’s Handbook of Neurosurgery. 10th ed. New York: Thieme Medical Publishers; 2023.
Kim KH. Predictors of 30-day mortality and 90-day functional recovery after primary intracerebral hemorrhage: hospital-based multivariate analysis in 585 patients. J Korean Neurosurg Soc. 2009;45(6):341–349. https://doi.org/10.3340/jkns.2009.45.6.341
Haque MZ, Hossain A, Mohammad QD, Sarker S, Nurullah AM, Roy N, Alam SJ. Correlation between degree of midline shift at computed tomography scan of brain and Glasgow Coma Scale score in spontaneous intracerebral hemorrhage. Dinajpur Med Col J. 2013;6(2):172–179.
Taylor WR, Chen JW, Meltzer H, Gennarelli TA, Kelbch C, Knowlton S, et al. Quantitative pupillometry, a new technology: normative data and preliminary observations in patients with acute head injury. J Neurosurg. 2003;98(1):205–213. https://doi.org/10.3171/jns.2003.98.1.0205
McNett M, Moran C, Grimm D, Gianakis A. Pupillometry trends in the setting of increased intracranial pressure. J Neurosci Nurs. 2018;50(6):357–361. https://doi.org/10.1097/JNN.0000000000000401
Al-Obaidi SZ, Atem FD, Stutzman SE, Olson DM. Impact of increased intracranial pressure on pupillometry: a replication study. Crit Care Explor. 2019;1(10):e0054. https://doi.org/10.1097/CCE.0000000000000054
Osman M, Stutzman SE, Atem F, Olson D, Hicks AD, Ortega-Perez S, Aoun SG, Salem A, Aiyagari V. Correlation of objective pupillometry to midline shift in acute stroke patients. J Stroke Cerebrovasc Dis. 2019;28(7):1902–1910. https://doi.org/10.1016/j.jstrokecerebrovasdis.2019.03.055
Kim IS, Balogun OO, Prescott BR, Saglam H, Olson DM, Speir K, et al. Quantitative pupillometry and radiographic markers of intracranial midline shift: a pilot study. Front Neurol. 2022;13:1046548. https://doi.org/10.3389/fneur.2022.1046548
Chen W, Belle A, Cockrell C, Ward KR, Najarian K. Automated midline shift and intracranial pressure estimation based on brain CT images. J Vis Exp. 2013;(74):3871. https://doi.org/10.3791/3871
Palekar SG, Jaiswal M, Patil M, Malpathak V. Outcome prediction in patients of traumatic brain injury based on midline shift on CT scan of brain. Indian J Neurosurg. 2021;10(3):210–215. https://doi.org/10.1055/s-0040-1716990
Englander J, Cifu DX, Wright JM, Black K. The association of early computed tomography scan findings and ambulation, self-care, and supervision needs at rehabilitation discharge and at 1 year after traumatic brain injury. Arch Phys Med Rehabil. 2003;84(2):214–220. https://doi.org/10.1053/apmr.2003.50094
Chiewvit P, Tritakarn SO, Nanta-aree S, Suthipongchai S. Degree of midline shift from CT scan predicted outcome in patients with head injuries. Med Assoc Thai. 2010;93(1):99.
Ecker A. Upward transtentorial herniation of the brain stem and cerebellum due to tumor of the posterior fossa: with special note on tumors of the acoustic nerve. J Neurosurg. 1948;5(1):51–61. https://doi.org/10.3171/jns.1948.5.1.0051
Prabhakar H, Umesh G, Chouhan RS, Bithal PK. Reverse brain herniation during posterior fossa surgery. J Neurosurg Anesthesiol. 2003;15(3):267–269. https://doi.org/10.1097/00008506-200307000-00016
Osborn A, Heaston D, Wing S. Diagnosis of ascending transtentorial herniation by cranial computed tomography. Am J Roentgenol. 1978;130(4):755–760. https://doi.org/10.2214/ajr.130.4.755
Singla N, Kapoor A, Chatterjee D. Diagnosing early upward cerebellar herniation by computed tomography: a diagnostic boom, a savior. Surg Neurol Int. 2016;7(1):72. https://doi.org/10.4103/2152-7806.185009
Riveros Gilardi B, Muñoz López JI, Hernández Villegas AC, Garay Mora JA, Rico Rodríguez OC, Chávez Appendini R, et al. Types of cerebral herniation and their imaging features. Radiographics. 2019;39(6):1598–1610. https://doi.org/10.1148/rg.2019190018
Amparado MKMF, Jose MGRB. Upward herniation in awake craniotomy: a case report. Acta Med Philipp. 2024;58(9):8815. https://doi.org/10.47895/amp.v58i9.8815
Moscardini-Martelli J, Ponce-Gomez JA, Alcocer-Barradas V, Romano-Feinholz S, Padilla-Quiroz P, Osuna Zazueta M, et al. Upward transtentorial herniation: a new role for endoscopic third ventriculostomy. Surg Neurol Int. 2021;12:334. https://doi.org/10.25259/SNI_140_2021
Godoy DA. Intensive Care in Neurology and Neurosurgery: Pathophysiological Basis for the Management of Acute Cerebral Injury. 1st ed. Turin: SEEd; 2013.
Cuneo RA, Pitts L, Townsend J, Winestock DP. Upward transtentorial herniation. Arch Neurol. 1979;36:618–623. https://doi.org/10.1001/archneur.1979.00500460052006
Abe T, Nakamura N, Sekino H, Suzuki T, Ishiyama R. Clinical significance and radiological findings of the transtentorial upward herniation in the infratentorial tumors: CT findings. Neurol Med Chir (Tokyo). 1978;18pt2(4):295–301. https://doi.org/10.2176/nmc.18pt2.295
Bruno A, Paletta N, Verma U, Grabowska M, Batchala P, Abay S, et al. Limiting brain shift in malignant hemispheric infarction by decompressive craniectomy. J Stroke Cerebrovasc Dis. 2021;30(7):105830. doi:10.1016/j.jstrokecerebrovasdis.2021.105830
Panchal H, Patel S, Nischal SA, Thamilmaran A, China M, Vankipuram S. Hinge craniotomy versus decompressive craniectomy for the neurosurgical management of traumatic brain injury and stroke: A systematic review and meta-analysis. Clin Neurol Neurosurg. 2025 Dec;259:109225. doi: 10.1016/j.clineuro.2025.109225. Epub 2025 Nov 4. PMID: 41205574.
Wang X, Gu L, Sun J, Zhang B, Liu G. Effectiveness of controlled decompression against conventional decompression methods for the management of severe traumatic brain injury patients: A meta-analysis. Eur J Med Res.2025;30:181. doi:10.1186/s40001-025-02428-3
Lu W, Jia D, Qin Y. Decompressive craniectomy combined with temporal pole resection in the treatment of massive cerebral infarction. BMC Neurol. 2022;22(1):167. doi:10.1186/s12883-022-02688-0
Gagliardi F, Gragnaniello C, Mortini P, Caputy AJ, editors. Operative Cranial Neurosurgical Anatomy. 1st ed. New York: Thieme Medical Publishers; 2019.
Ramos A, Chaddad-Neto F, Dória-Netto HL, Campos-Filho JM, Oliveira E. Cerebellar anatomy as applied to cerebellar microsurgical resections. Arq Neuropsiquiatr. 2012;70(6):441–446. https://doi.org/10.1590/S0004-282X2012000600011
García-Feijoo P, Reghin-Neto M, Holanda V, Rassi MS, Saceda-Gutierrez JM, Carceller-Benito FE, De Oliveira E. 3-step didactic white matter dissection of human cerebellum: micro-neuroanatomical training. Neurocirugia (Engl Ed). 2022;33(2):61–70. https://doi.org/10.1016/j.neucie.2021.04.003
Formentin C, Matias LG, de Souza Rodrigues dos Santos L, et al. Anatomy of the posterior fossa: a comprehensive description for pediatric brain tumors. Childs Nerv Syst. 2024;40:613–624. https://doi.org/10.1007/s00381-023-06220-8
Raabe A, Meyer B, Schaller K, Vajkoczy P, Winkler PA, editors. The Craniotomy Atlas. 1st ed. New York: Thieme Medical Publishers; 2019. https://doi.org/10.1055/b-0039-169393