Genetic Polymorphisms Associated with Obesity in Southeast Asian Populations: A Systematic Review without Meta-Analysis

Main Article Content

Ubashini Vijakumaran
Nor Azian Abdul Murad
Muhammad Irfan Abdul Jalal
Siok Fong Chin
A Rahman A Jamal
Noraidatulakma Abdullah

Abstract

Obesity is a growing global public health challenge, with genetic factors playing a crucial role in its development. This review synthesises findings from Southeast Asian studies to investigate the association between gene polymorphisms and obesity risk across various ethnic populations. A comprehensive search of three databases, PubMed, Scopus, and Web of Science, initially retrieved 2,021 articles, from which 25 studies were meticulously selected based on stringent inclusion and exclusion criteria. The quality of the studies was assessed through the Newcastle-Ottawa Scale (NOS), a risk bias tool. These studies encompass 8,312 participants and examined 33 single nucleotide polymorphisms (SNPs). UCP polymorphism demonstrated a significant association with overall adiposity (OR = 2.02, P = 0.01) in Malaysian women, while the rs659366 UCP2 was linked to weight gain in an Indonesian cohort. LEP variants were not significantly associated with obesity in Malaysians, and FTO variants showed mixed results, with rs9939609 (OR = 3.72, P = 0.009) and rs1421085 (OR = 3.22, P < 0.001) variants being associated with obesity and higher body mass index (BMI) in Indonesians, but no significant findings in Malaysians. These results emphasise the genetic diversity within Southeast Asia and the challenges in replicating genetic associations across populations. To address these inconsistencies and improve our understanding of obesity in Southeast Asia, there is a pressing need for more extensive and diverse cohort studies, complemented by comprehensive genome-wide association studies (GWAS), to identify robust obesity biomarkers in Southeast Asia.

Article Details

How to Cite
1.
Vijakumaran U, Abdul Murad NA, Abdul Jalal MI, Chin SF, A Jamal AR, Abdullah N. Genetic Polymorphisms Associated with Obesity in Southeast Asian Populations: A Systematic Review without Meta-Analysis. Malays J Med Sci [Internet]. 2025 Dec. 31 [cited 2026 Jan. 12];32(6). Available from: https://ejournal.usm.my/mjms/article/view/mjms_vol32-no6-2025_2
Section
Review Article

References

World Health Organization. Obesity and overweight [Internet]. Geneva: World Health Organization; 2024 [Retrieved 2024 Sep 22]. Available at: https://www.who.int/news-room/fact-sheets/detail/obesity-and-overweight

Loos RJF, Yeo GSH. The genetics of obesity: from discovery to biology. Nat Rev Genet. 2022;23(2):120–133. https://doi.org/10.1038/s41576-021-00414-z

Han JC, Rasmussen MC, Forte AR, Schrage SB, Zafar SK, Haqq AM. Management of monogenic and syndromic obesity. Gastroenterol Clin North Am. 2023;52(4):733–750. https://doi.org/10.1016/j.gtc.2023.08.005

Vourdoumpa A, Paltoglou G, Charmandari E. The genetic basis of childhood obesity: a systematic review. Nutrients. 2023;15(6):1416. https://doi.org/10.3390/nu15061416

Winer DA, Luck H, Tsai S, Winer S. The intestinal immune system in obesity and insulin resistance. Cell Metab. 2016;23(3):413–426. https://doi.org/10.1016/j.cmet.2016.01.003

Friedman JM. Leptin and the endocrine control of energy balance. Nat Metab. 2019;1(8):754–764. https://doi.org/10.1038/s42255-019-0095-y

Yeo GSH, Chao DHM, Siegert AM, Koerperich ZM, Ericson MD, Simonds SE, et al. The melanocortin pathway and energy homeostasis: from discovery to obesity therapy. Mol Metab. 2021;48:101206. https://doi.org/10.1016/j.molmet.2021.101206

Baldini G, Phelan KD. The melanocortin pathway and control of appetite-progress and therapeutic implications. J Endocrinol. 2019;241(1):R1–R33. https://doi.org/10.1530/joe-18-0596

Liu J, Lai F, Hou Y, Zheng R. Leptin signaling and leptin resistance. Med Rev (2021). 2022;2(4):363–384. https://doi.org/10.1515/mr-2022-0017

Faccioli N, Poitou C, Clément K, Dubern B. Current treatments for patients with genetic obesity. J Clin Res Pediatr Endocrinol. 2023;15(2):108–119. https://doi.org/10.4274/jcrpe.galenos.2023.2023-3-2

Harbuzariu A, Oprea-Ilies GM, Gonzalez-Perez RR. The role of notch signaling and leptin-notch crosstalk in pancreatic cancer. Medicines (Basel). 2018;5(3):68. https://doi.org/10.3390/medicines5030068

Jin X, Qiu T, Li L, Yu R, Chen X, Li C, et al. Pathophysiology of obesity and its associated diseases. Acta Pharm Sin B. 2023;13(6):2403–2424. https://doi.org/10.1016/j.apsb.2023.01.012

Kassouf T, Sumara G. Impact of conventional and atypical MAPKs on the development of metabolic diseases. Biomolecules. 2020;10(9):1256. https://doi.org/10.3390/biom10091256

Yaribeygi H, Sathyapalan T, Atkin SL, Sahebkar A. Molecular mechanisms linking oxidative stress and diabetes mellitus. Oxid Med Cell Longev. 2020;2020:8609213. https://doi.org/10.1155/2020/8609213

Bashan N, Dorfman K, Tarnovscki T, Harman-Boehm I, Liberty IF, Blüher M, et al. Mitogen-activated protein kinases, inhibitory-kappaB kinase, and insulin signaling in human omental versus subcutaneous adipose tissue in obesity. Endocrinology. 2007;148(6):2955–2962. https://doi.org/10.1210/en.2006-1369

Mahmoud R, Kimonis V, Butler MG. Genetics of obesity in humans: a clinical review. Int J Mol Sci. 2022;23(19):11005. https://doi.org/10.3390/ijms231911005

Scuteri A, Sanna S, Chen WM, Uda M, Albai G, Strait J, et al. Genome-wide association scan shows genetic variants in the FTO gene are associated with obesity-related traits. PLoS Genet. 2007;3(7):e115. https://doi.org/10.1371/journal.pgen.0030115

Frayling TM, Timpson NJ, Weedon MN, Zeggini E, Freathy RM, Lindgren CM, et al. A common variant in the FTO gene is associated with body mass index and predisposes to childhood and adult obesity. Science. 2007;316(5826):889–894. https://doi.org/10.1126/science.1141634

Rankinen T, Zuberi A, Chagnon YC, Weisnagel SJ, Argyropoulos G, Walts B, et al. The human obesity gene map: the 2005 update. Obesity (Silver Spring). 2006;14(4):529–644. https://doi.org/10.1038/oby.2006.71

Kurokawa N, Young EH, Oka Y, Satoh H, Wareham NJ, Sandhu MS, et al. The ADRB3 Trp64Arg variant and BMI: a meta-analysis of 44,833 individuals. Int J Obes (Lond). 2008;32(8):1240–1249. https://doi.org/10.1038/ijo.2008.90

Wang D, Ma J, Zhang S, Hinney A, Hebebrand J, Wang Y, et al. Association of the MC4R V103I polymorphism with obesity: a Chinese case-control study and meta-analysis in 55,195 individuals. Obesity (Silver Spring). 2010;18(3):573–579. https://doi.org/10.1038/oby.2009.268

Shugart YY, Chen L, Day IN, Lewis SJ, Timpson NJ, Yuan W, et al. Two British women studies replicated the association between the Val66Met polymorphism in the brain-derived neurotrophic factor (BDNF) and BMI. Eur J Hum Genet. 2009;17(8):1050–1055. https://doi.org/10.1038/ejhg.2008.272

Supti DA, Akter F, Rahman MI, Munim MA, Tonmoy MIQ, Tarin RJ, et al. Meta-analysis investigating the impact of the LEPR rs1137101 (A>G) polymorphism on obesity risk in Asian and Caucasian ethnicities. Heliyon. 2024;10(6):e27213. https://doi.org/10.1016/j.heliyon.2024.e27213

Yin D, Li Y, Liao X, Tian D, Xu Y, Zhou C, et al. FTO: a critical role in obesity and obesity-related diseases. Br J Nutr. 2023;130(10):1657–1664. https://doi.org/10.1017/s0007114523000764

Nead KT, Li A, Wehner MR, Neupane B, Gustafsson S, Butterworth A, et al. Contribution of common non-synonymous variants in PCSK1 to body mass index variation and risk of obesity: a systematic review and meta-analysis with evidence from up to 331,175 individuals. Hum Mol Genet. 2015;24(12):3582–3594. https://doi.org/10.1093/hmg/ddv097

Benzinou M, Chèvre JC, Ward KJ, Lecoeur C, Dina C, Lobbens S, et al. Endocannabinoid receptor 1 gene variations increase risk for obesity and modulate body mass index in European populations. Hum Mol Genet. 2008;17(13):1916–1921. https://doi.org/10.1093/hmg/ddn089

Pulit SL, Stoneman C, Morris AP, Wood AR, Glastonbury CA, Tyrrell J, et al. Meta-analysis of genome-wide association studies for body fat distribution in 694,649 individuals of European ancestry. Hum Mol Genet. 2019;28(1):166–174. https://doi.org/10.1093/hmg/ddy327

Wong HS, Tsai SY, Chu HW, Lin MR, Lin GH, Tai YT, et al. Genome-wide association study identifies genetic risk loci for adiposity in a Taiwanese population. PLoS Genet. 2022;18(1):e1009952. https://doi.org/10.1371/journal.pgen.1009952

Chiang KM, Chang HC, Yang HC, Chen CH, Chen HH, Lee WJ, et al. Genome-wide association study of morbid obesity in Han Chinese. BMC Genet. 2019;20(1):97. https://doi.org/10.1186/s12863-019-0797-x

Saeed S, Bonnefond A, Tamanini F, Mirza MU, Manzoor J, Janjua QM, et al. Loss-of-function mutations in ADCY3 cause monogenic severe obesity. Nat Genet. 2018;50(2):175–179. https://doi.org/10.1038/s41588-017-0023-6

Özcabı B, Durmaz A, Aykut A, Önal H, Özen S. A rare case of monogenic obesity due to a novel variant in the ADCY3 gene: challenges in follow-up and treatment. J Clin Res Pediatr Endocrinol. 2025;17(3):337–344. https://doi.org/10.4274/jcrpe.galenos.2023.2023-7-2

van der Klaauw AA, Croizier S, Mendes de Oliveira E, Stadler LKJ, Park S, Kong Y, et al. Human semaphorin 3 variants link melanocortin circuit development and energy balance. Cell. 2019;176(4):729–742.e18. https://doi.org/10.1016/j.cell.2018.12.009

Markham A. Setmelanotide: first approval. Drugs. 2021;81(3):397–403. https://doi.org/10.1007/s40265-021-01470-9

Pressley H, Cornelio CK, Adams EN. Setmelanotide: a novel targeted treatment for monogenic obesity. J Pharm Technol. 2022;38(6):368–373. https://doi.org/10.1177/87551225221116010

Kunasegaran T, Balasubramaniam VRMT, Arasoo VJT, Palanisamy UD, Ramadas A. Gestational diabetes mellitus in Southeast Asia: a scoping review. Int J Environ Res Public Health. 2021;18(3):1272. https://doi.org/10.3390/ijerph18031272

Tham KW, Abdul Ghani R, Cua SC, Deerochanawong C, Fojas M, Hocking S, et al. Obesity in South and Southeast Asia: a new consensus on care and management. Obes Rev. 2023;24(2):e13520. https://doi.org/10.1111/obr.13520

Dorajoo R, Blakemore AI, Sim X, Ong RT, Ng DP, Seielstad M, et al. Replication of 13 obesity loci among Singaporean Chinese, Malay and Asian-Indian populations. Int J Obes (Lond). 2012;36(1):159–163. https://doi.org/10.1038/ijo.2011.86

Zhao NN, Dong GP, Wu W, Wang JL, Ullah R, Fu JF. FTO gene polymorphisms and obesity risk in Chinese population: a meta-analysis. World J Pediatr. 2019;15(4):382–389. https://doi.org/10.1007/s12519-019-00254-2

Vasan SK, Karpe F, Gu HF, Brismar K, Fall CH, Ingelsson E, et al. FTO genetic variants and risk of obesity and type 2 diabetes: a meta-analysis of 28,394 Indians. Obesity (Silver Spring). 2014;22(3):964–970. https://doi.org/10.1002/oby.20606

Apalasamy YD, Ming MF, Rampal S, Bulgiba A, Mohamed Z. Genetic association of SNPs in the FTO gene and predisposition to obesity in Malaysian Malays. Braz J Med Biol Res. 2012;45(12):1119–1126. https://doi.org/10.1590/s0100-879x2012007500134

Fan SH, Say YH. Leptin and leptin receptor gene polymorphisms and their association with plasma leptin levels and obesity in a multi-ethnic Malaysian suburban population. J Physiol Anthropol. 2014;33(1):15. https://doi.org/10.1186/1880-6805-33-15

Mohanraj J, D’Souza UJA, Fong SY, Karkada IR, Jaiprakash H. Association between leptin (G2548A) and leptin receptor (Q223R) polymorphisms with plasma leptin, BMI, stress, sleep and eating patterns among the multiethnic young Malaysian adult population from a healthcare university. Int J Environ Res Public Health. 2022;19(14):8862. https://doi.org/10.3390/ijerph19148862

Campbell M, McKenzie JE, Sowden A, Katikireddi SV, Brennan SE, Ellis S, et al. Synthesis without meta-analysis (SWiM) in systematic reviews: reporting guideline. BMJ. 2020;368:l6890. https://doi.org/10.1136/bmj.l6890

Shunmugam V, Say YH. Evaluation of association of ADRA2A rs553668 and ACE I/D gene polymorphisms with obesity traits in the Setapak population, Malaysia. Iran Red Crescent Med J. 2016;18(2):e22452. https://doi.org/10.5812/ircmj.22452

Apalasamy YD, Ming MF, Rampal S, Bulgiba A, Mohamed Z. Gender-dependent association of a β(2)-adrenergic gene variant with obesity parameters in Malaysian Malays. Asia Pac J Public Health. 2015;27(2):154–165. https://doi.org/10.1177/1010539511430250

Lek FY, Ong HH, Say YH. Association of dopamine receptor D2 gene (DRD2) Taq1 polymorphisms with eating behaviors and obesity among Chinese and Indian Malaysian university students. Asia Pac J Clin Nutr. 2018;27(3):707–717. https://doi.org/10.6133/apjcn.092017.09

Apalasamy YD, Rampal S, Salim A, Moy FM, Bulgiba A, Mohamed Z. Association of ADIPOQ gene with obesity and adiponectin levels in Malaysian Malays. Mol Biol Rep. 2014;41(5):2917–2921. https://doi.org/10.1007/s11033-014-3147-0

Apidi E, Sani A, Khairi Z, Johari Z, Izanwati R, Izanwati A, et al. Association of angiotensin converting enzyme (ACE) gene insertion/deletion (I/D) polymorphism with obesity and obesity-related phenotypes in Malay subjects. Jordan J Biol Sci. 2020;13(3):267–273.

Mitra SR, Tan PY, Amini F. Effect of FTO rs9930506 on obesity and interaction of the gene variants with dietary protein and vitamin E on C-reactive protein levels in multi-ethnic Malaysian adults. J Hum Nutr Diet. 2018;31(6):758–772. https://doi.org/10.1111/jhn.12593

Kok YY, Ong HH, Say YH. Interleukin-1 receptor antagonist and interleukin-4 genes variable number tandem repeats are associated with adiposity in Malaysian subjects. J Obes. 2017;2017:4104137. https://doi.org/10.1155/2017/4104137

Wan Rohani WT, Aryati A, Amiratul Athirah S. Haplotype analysis of leptin gene polymorphisms in obesity among Malays in Terengganu, Malaysia population. Med J Malaysia. 2018;73(5):281–285.

Lee KH, Chai VY, Kanachamy SS, Say YH. Association of UCP1 -3826A/G and UCP3 -55C/T gene polymorphisms with obesity and its related traits among multi-ethnic Malaysians. Ethn Dis. 2015;25(1):65–71.

Say YH, Ban ZL, Arumugam Y, Kaur T, Tan ML, Chia PP, et al. Uncoupling protein 2 gene (UCP2) 45-bp I/D polymorphism is associated with adiposity among Malaysian women. J Biosci. 2014;39(5):867–875. https://doi.org/10.1007/s12038-014-9488-y

Chia PP, Fan SH, Say YH. Screening of peroxisome proliferator-activated receptors (PPARs) α, γ and α gene polymorphisms for obesity and metabolic syndrome association in the multi-ethnic Malaysian population. Ethn Dis. 2015;25(4):383–390. https://doi.org/10.18865/ed.25.4.383

Daya M, Pujianto DA, Witjaksono F, Priliani L, Susanto J, Lukito W, et al. Obesity risk and preference for high dietary fat intake are determined by FTO rs9939609 gene polymorphism in selected Indonesian adults. Asia Pac J Clin Nutr. 2019;28(1):183–191. https://doi.org/10.6133/apjcn.201903_28(1).0024

Al-Jawadi AA, Priliani L, Oktavianthi S, Febinia CA, Daya M, Artika IM, et al. Association of FTO rs1421085 single nucleotide polymorphism with fat and fatty acid intake in Indonesian adults. BMC Res Notes. 2021;14(1):411. https://doi.org/10.1186/s13104-021-05823-1

Muhammad HFL, Sulistyoningrum DC, Huriyati E, Lee YY, Muda W. The interaction between energy intake, physical activity and UCP2 -866G/A gene variation on weight gain and changes in adiposity: an Indonesian nutrigenetic cohort (INDOGENIC). Br J Nutr. 2021;125(6):611–617. https://doi.org/10.1017/s0007114520003104

Martantiningtyas DC, Hastuti P, Sadewa AH. Leu72Met polymorphism of GHRL gene increase the risk factor of obesity in a Javanese ethnic group from Indonesia. Meta Gene. 2021;29:100912. https://doi.org/10.1016/j.mgene.2021.100912

Priliani L, Oktavianthi S, Hasnita R, Nussa HT, Inggriani RC, Febinia CA, et al. Obesity in the Balinese is associated with FTO rs9939609 and rs1421085 single nucleotide polymorphisms. PeerJ. 2020;8:e8327. https://doi.org/10.7717/peerj.8327

Hastuti P, Zukhrufia I, Padwaswari MH, Nuraini A, Sadewa AH. Polymorphism in leptin receptor gene was associated with obesity in Yogyakarta, Indonesia. Egypt J Med Hum Genet. 2016;17(3):271–276. https://doi.org/10.1016/j.ejmhg.2015.12.011

Utami RF, Hastuti P, Sadewa AH. RETN rs3745368 polymorphism and resistin level in Javanese ethnic Indonesian obese: a case control study. J Teknol Laboratorium. 2019;8(1):41–49. https://doi.org/10.29238/teknolabjournal.v8i1.164

Pramudji H, Demes CM, Dewi K, Tasmini T, Ahmad HS. Association of -174 G>C interleukin-6 gene polymorphism with interleukin-6 and C-reactive protein levels and obesity: a case-control study among people/residents of Western Indonesia. Med J Malaysia. 2019;74(5):400–404.

Surniyantoro HNE, Sadewa AH, Hastuti P. Uncoupling protein 2 (UCP2) as genetic risk factor for obesity in Indonesia is different in gender stratification. Kobe J Med Sci. 2018;64(2):E64–E72.

Oktavianthi S, Trimarsanto H, Febinia CA, Suastika K, Saraswati MR, Dwipayana P, et al. Uncoupling protein 2 gene polymorphisms are associated with obesity. Cardiovasc Diabetol. 2012;11:41. https://doi.org/10.1186/1475-2840-11-41

Binh TQ, Nakahori Y, Hien VTT, Khan NC, Lam NT, Mai LB, et al. Correlations between genetic variance and adiposity measures, and gene×gene interactions for obesity in postmenopausal Vietnamese women. J Genet. 2011;90:1–9. https://doi.org/10.1007/s12041-011-0028-3

Wells GA, Shea B, O’Connell D, Robertson J, Peterson J, Welch V, et al. The Newcastle–Ottawa Scale (NOS) for assessing the quality of non-randomised studies in meta-analyses [Internet]. Ottawa: Ottawa Hospital Research Institute; 2011 [Retrieved 2024 Dec 22]. Available at: https://www.ohri.ca/programs/clinical_epidemiology/oxford.asp

Farr OM, Gavrieli A, Mantzoros CS. Leptin applications in 2015: what have we learned about leptin and obesity? Curr Opin Endocrinol Diabetes Obes. 2015;22(5):353–359. https://doi.org/10.1097/MED.0000000000000184

Obradovic M, Sudar-Milovanovic E, Soskic S, Essack M, Arya S, Stewart AJ, et al. Leptin and obesity: role and clinical implication. Front Endocrinol (Lausanne). 2021;12:585887. https://doi.org/10.3389/fendo.2021.585887

Chaves C, Kay T, Anselmo J. Early onset obesity due to a mutation in the human leptin receptor gene. Endocrinol Diabetes Metab Case Rep. 2022;21:024. https://doi.org/10.1530/EDM-21-0124

Karvonen MK, Pesonen U, Heinonen P, Laakso M, Rissanen A, Naukkarinen H, et al. Identification of new sequence variants in the leptin gene. J Clin Endocrinol Metab. 1998;83(9):3239–3242. https://doi.org/10.1210/jcem.83.9.5135

Maculewicz E, Leońska-Duniec A, Mastalerz A, Szarska E, Garbacz A, Lepionka T, et al. The influence of FTO, FABP2, LEP, LEPR, and MC4R genes on obesity parameters in physically active Caucasian men. Int J Environ Res Public Health. 2022;19(10):6030. https://doi.org/10.3390/ijerph19106030

Li WD, Reed DR, Lee JH, Xu W, Kilker RL, Sodam BR, et al. Sequence variants in the 5’ flanking region of the leptin gene are associated with obesity in women. Ann Hum Genet. 1999;63(Pt 3):227–234. https://doi.org/10.1046/j.1469-1809.1999.6330227.x

Sabi EM, Bin Dahman LS, Mohammed AK, Sumaily KM, Al-Daghri NM. -2548G>A LEP polymorphism is positively associated with increased leptin and glucose levels in obese Saudi patients irrespective of blood pressure status. Medicina (Kaunas). 2022;58(3):346. https://doi.org/10.3390/medicina58030346

Yiannakouris N, Melistas L, Yannakoulia M, Mungal K, Mantzoros CS. The -2548G/A polymorphism in the human leptin gene promoter region is associated with plasma free leptin levels; interaction with adiposity and gender in healthy subjects. Hormones (Athens). 2003;2(4):229–236. https://doi.org/10.14310/horm.2002.11104

Rosenberg NA, Huang L, Jewett EM, Szpiech ZA, Jankovic I, Boehnke M. Genome-wide association studies in diverse populations. Nat Rev Genet. 2010;11(5):356–366. https://doi.org/10.1038/nrg2760

Popejoy AB, Fullerton SM. Genomics is failing on diversity. Nature. 2016;538(7624):161–164. https://doi.org/10.1038/538161a

Zhang L, Yuan LH, Xiao Y, Lu MY, Zhang LJ, Wang Y. Association of leptin gene -2548 G/A polymorphism with obesity: a meta-analysis. Ann Nutr Metab. 2014;64(2):127–136. https://doi.org/10.1159/000363392

Nesrine Z, Haithem H, Imen B, Fadoua N, Asma O, Fadhel NM, et al. Leptin and leptin receptor polymorphisms, plasma leptin levels and obesity in Tunisian volunteers. Int J Exp Pathol. 2018;99(3):121–130. https://doi.org/10.1111/iep.12271

Chagnon YC, Wilmore JH, Borecki IB, Gagnon J, Pérusse L, Chagnon M, et al. Associations between the leptin receptor gene and adiposity in middle-aged Caucasian males from the HERITAGE Family Study. J Clin Endocrinol Metab. 2000;85(1):29–34. https://doi.org/10.1210/jcem.85.1.6263

Huang C, Chen W, Wang X. Studies on the fat mass and obesity-associated (FTO) gene and its impact on obesity-associated diseases. Genes Dis. 2023;10(6):2351–2365. https://doi.org/10.1016/j.gendis.2022.04.014

Chey WW, Sook HF, Yee HS. Association of fat mass and obesity-associated (FTO) gene rs9939609 variant with obesity among multi-ethnic Malaysians in Kampar, Perak. Sains Malaysiana. 2013;42(3):365–371.

Susmiati S, Lipoeto NI, Surono IS, Jamsari J. Association of fat mass and obesity-associated rs9939609 polymorphisms and eating behaviour and food preferences in adolescent Minangkabau girls. Pak J Nutr. 2018;17:471–479. https://doi.org/10.3923/pjn.2018.471.479

Chang X, Dorajoo R, Sun Y, Han Y, Wang L, Khor C-C, et al. Gene-diet interaction effects on BMI levels in the Singapore Chinese population. Nutr J. 2018;17(1):31. https://doi.org/10.1186/s12937-018-0340-3

Pravednikova AE, Shevchenko SY, Kerchev VV, Skhirtladze MR, Larina SN, Kachaev ZM, et al. Association of uncoupling protein (UCP) gene polymorphisms with cardiometabolic diseases. Mol Med. 2020;26(1):51. https://doi.org/10.1186/s10020-020-00180-4

Sivenius K, Valve R, Lindi V, Niskanen L, Laakso M, Uusitupa M. Synergistic effect of polymorphisms in uncoupling protein 1 and β3-adrenergic receptor genes on long-term body weight change in Finnish type 2 diabetic and non-diabetic control subjects. Int J Obes Relat Metab Disord. 2000;24(4):514–519. https://doi.org/10.1038/sj.ijo.0801194

Chathoth S, Ismail MH, Vatte C, Cyrus C, Al Ali Z, Ahmed KA, et al. Association of uncoupling protein 1 (UCP1) gene polymorphism with obesity: a case-control study. BMC Med Genet. 2018;19(1):203. https://doi.org/10.1186/s12881-018-0715-5

Sámano R, Huesca-Gómez C, López-Marure R, Hernández-Cabrera A-K, Rodríguez-Ventura A, Tolentino M, et al. Association between UCP polymorphisms and adipokines with obesity in Mexican adolescents. J Pediatr Endocrinol Metab. 2018;31(5):561–568. https://doi.org/10.1515/jpem-2017-0262

Liu X, Zhang B, Liu X, Shen Y, Li J, Zhao N, et al. A 45-bp insertion/deletion polymorphism in uncoupling protein 2 is not associated with obesity in a Chinese population. Biochem Genet. 2012;50(9-10):784–796. https://doi.org/10.1007/s10528-012-9520-6

Cassell PG, Neverova M, Janmohamed S, Uwakwe N, Qureshi A, McCarthy MI, et al. An uncoupling protein 2 gene variant is associated with a raised body mass index but not type II diabetes. Diabetologia. 1999;42(6):688–692. https://doi.org/10.1007/s001250051216

Mărginean CO, Mărginean C, Bănescu C, Meliţ LE, Tripon F, Iancu M. The relationship between MMP9 and ADRA2A gene polymorphisms and mothers-newborns’ nutritional status: an exploratory path model (STROBE compliant article). Pediatr Res. 2019;85(6):822–829. https://doi.org/10.1038/s41390-019-0347-2

Långberg EC, Seed Ahmed M, Efendic S, Gu HF, Östenson CG. Genetic association of adrenergic receptor alpha 2A with obesity and type 2 diabetes. Obesity (Silver Spring). 2013;21(8):1720–1725. https://doi.org/10.1002/oby.20162

Albuquerque D, Nóbrega C, Manco L, Padez C. The contribution of genetics and environment to obesity. Br Med Bull. 2017;123(1):159–173. https://doi.org/10.1093/bmb/ldx022